Most Download

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All
  • Most Downloaded in Recent Month
  • Most Downloaded in Recent Year

Please wait a minute...
  • Select all
    |
  • SERVICES AND APPLICATIONS
    Danfeng Yan, Guang Zhou, Xuan Zhao, Yuan Tian, Fangchun Yang
    China Communications. 2016, 13(8): 244-257.
    Some research work has showed that public mood and stock market price have some relations in some degree. Although it is difficult to clear the relation, the research about the relation between stock market price and public mood is interested by some scientists. This paper tries to find the relationship between Chinese stock market and Chinese local Microblog. First, C-POMS (Chinese Profile of Mood States) was proposed to analyze sentiment of Microblog feeds. Then Granger causality test confirmed the relation between C-POMS analysis and price series. SVM and Probabilistic Neural Network were used to make prediction, and experiments show that SVM is better to predict stock market movements than Probabilistic Neural Network. Experiments also indicate that adding certain dimension of C-POMS as the input data will improve the prediction accuracy to 66.667%. Two dimensions to input data leads to the highest accuracy of 71.429%, which is about 20% higher than using only history stock data as the input data. This paper also compared the proposed method with the ROSTEA scores, and concluded that only the proposed method brings more accurate predicts.
  • SECURITY SCHEMES AND SOLUTIONS
    ZHAO Bo, XIANG Shuang, AN Yang, TAO Wei
    China Communications. 2016, 13(1): 161-175.
    This paper analyzes the threat of TCG Software Stack (TSS)/TCM Service Module (TSM) deadlock in multi-user environment such as cloud and discusses its causes and mechanism. In addition, this paper puts forward a dynamic priority task scheduling strategy based on value evaluation to handle this threat. The strategy is based on the implementation features of trusted hardware and establishes a multi-level ready queue. In this strategy, an algorithm for real-time value computing is also designed, and it can adjust the production curves of the real time value by setting parameters in different environment, thus enhancing its adaptability, which is followed by scheduling and algorithm description. This paper also implements the algorithm and carries out its performance optimization. Due to the experiment result from Intel NUC, it is shown that TSS based on advanced DPTSV is able to solve the problem of deadlock with no negative influence on performance and security in multi-user environment.
  • FEATURE TOPIC: RESILIENT SATELLITE COMMUNICATION NETWORKS TOWARDS HIGHLY DYNAMIC AND HIGHLY RELIABLE TRANSMISSION
    Shaojing Wang, Xiaomei Tang, Jing Lei, Chunjiang Ma, Chao Wen, Guangfu Sun
    China Communications. 2024, 21(2): 17-31. DOI: https://doi.org/10.23919/JCC.fa.2023-0229.202402

    Orthogonal Time Frequency and Space (OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio (SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator (RBFSD) based on the pseudo-noise (PN) sequence. The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about $1/D$ times less complex than the existing PN pilot sequence algorithm, where $D$ is the resolution of the fractional Doppler.

  • FEATURE TOPIC: INTEGRATED TERRESTRIALSATELLITE NETWORKS
    Peilong Liu, Hongyu Chen, Songjie Wei, Limin Li, Zhencai Zhu
    China Communications. 2018, 15(6): 28-41.
    To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, these schemes may lead to cascading congestion in regions with high volume of traffic. To solve this problem, a Hybrid-Traffic-Detour based Load Balancing Routing (HLBR) scheme is proposed, where a Long-Distance Traffic Detour (LTD) method is devised and coordinates with distributed traffic detour method to perform self-adaptive load balancing. The forwarding path of LTD is acquired by the Circuitous Multipath Calculation (CMC) based on prior geographical information, and activated by the LTD- Shift-Trigger (LST) through real-time congestion perception. Simulation results show that the HLBR can mitigate cascading congestion and achieve efficient traffic distribution.
  • COVER PAPER
    Weijie Yuan, Shuangyang Li, Zhiqiang Wei, Yuanhao Cui, Jiamo Jiang, Haijun Zhang, Pingzhi Fan
    China Communications. 2023, 20(6): 1-25. DOI: https://doi.org/10.23919/JCC.fa.2022-0578.202306

    In the 6G era, Space-Air-Ground Integrated Network (SAGIN) are anticipated to deliver global coverage, necessitating support for a diverse array of emerging applications in high-mobility, hostile environments. Under such conditions, conventional orthogonal frequency division multiplexing (OFDM) modulation, widely employed in cellular and Wi-Fi communication systems, experiences performance degradation due to significant Doppler shifts. To overcome this obstacle, a novel two-dimensional (2D) modulation approach, namely orthogonal time frequency space (OTFS), has emerged as a key enabler for future high-mobility use cases. Distinctively, OTFS modulates information within the delay-Doppler (DD) domain, as opposed to the time-frequency (TF) domain utilized by OFDM. This offers advantages such as Doppler and delay resilience, reduced signaling latency, a lower peak-to-average ratio (PAPR), and a reduced-complexity implementation. Recent studies further indicate that the direct interplay between information and the physical world in the DD domain positions OTFS as a promising waveform for achieving integrated sensing and communications (ISAC). In this article, we present an in-depth review of OTFS technology in the context of the 6G era, encompassing fundamentals, recent advancements, and future directions. Our objective is to provide a helpful resource for researchers engaged in the field of OTFS.

  • REVIEW PAPER
    Renzhi Yuan, Jianshe Ma
    China Communications. 2016, 13(6): 63-75.
    With rapid advances of solar blind ultraviolet LED and ultraviolet detecting technology in recent years, ultraviolet communication gradually becomes a research hotspot due to its inherent advantages: low solar background noise, non-line-of-sight(NLOS) and good secrecy. The strong scattering characteristics in atmospheric render ultraviolet waveband the ideal choice for achieving NLOS optical communication. This paper reviews the research history and status of ultraviolet communication both in China and abroad, and especially introduces three main issues of ultraviolet communication: channel model, system analysis and design, light sources and detectors. For each aspect, current open issues and prospective research directions are analyzed.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Zhi Chen, Xinying Ma, Chong Han, Qiye Wen
    China Communications. 2021, 18(5): 93-119.
    Terahertz (THz) communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation (6G) wireless networks. In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves, an intelligent reflecting surface (IRS), which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements, is proposed to create smart radio environments, improve spectrum efficiency and enhance coverage capability. Firstly, some prospective application scenarios driven by the IRS empowered THz communications are introduced, including wireless mobile communications, secure communications, unmanned aerial vehicle (UAV) scenario, mobile edge computing (MEC) scenario and THz localization scenario. Then, we discuss the enabling technologies employed by the IRS empowered THz system, involving hardware design, channel estimation, capacity optimization, beam control, resource allocation and robustness design. Moreover, the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted. Concretely, these emerging problems possibly originate from channel modeling, new material exploration, experimental IRS testbeds and intensive deployment. Ultimately, the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.
  • SECURITY SCHEMES AND SOLUTIONS
    LIU Lizhao, LIU Jian, DAI Yaomei, XU Huarong, YIN Huayi, ZHU Shunzhi
    China Communications. 2016, 13(1): 100-112.
    Many websites use verification codes to prevent users from using the machine automatically to register, login, malicious vote or irrigate but it brought great burden to the enterprises involved in internet marketing as entering the verification code manually. Improving the verification code security system needs the identification method as the corresponding testing system. We propose an anisotropic heat kernel equation group which can generate a heat source scale space during the kernel evolution based on infinite heat source axiom, design a multi-step anisotropic verification code identification algorithm which includes core procedure ofbuilding anisotropic heat kernel, settingwave energy information parameters, combing outverification codecharacters and corresponding peripheral procedure of gray scaling, binarizing, denoising, normalizing, segmenting and identifying, give out the detail criterion and parameter set. Actual test show the anisotropic heat kernel identification algorithm can be used on many kinds of verification code including text characters, mathematical, chinese, voice, 3D, programming, video, advertising, it has a higher rate of 25% and 50% than neural network and context matching algorithm separately for Yahoo site, 49% and 60% for Captcha site, 20% and 52% for Baidu site, 60% and 65% for 3DTakers site, 40% and 51% for MDP site.
  • 6G TOWARDS 2030: FROM KEY TECHNOLOGY TO NETWORK ARCHITECTURE
    Yuanjie Li, Jincheng Dai, Zhongwei Si, Kai Niu, Chao Dong, Jiaru Lin, Sen Wang, Yifei Yuan
    China Communications. 2022, 19(3): 70-87.
    Unsourced multiple access (UMA) is a multi-access technology for massive, low-power, uncoordinated, and unsourced Machine Type Communication (MTC) networks. It ensures transmission reliability under the premise of high energy efficiency. Based on the analysis of the 6G MTC key performance indicators (KPIs) and scenario characteristics, this paper summarizes its requirements for radio access networks. Following this, the existing multiple access models are analyzed under these standards to determine UMA's advantages for 6G MTC according to its design characteristics. The critical technology of UMA is the design of its multiple-access coding scheme. Therefore, the existing UMA coding schemes from different coding paradigms are further summarized and compared. In particular, this paper comprehensively considers the energy efficiency and computational complexity of these schemes, studies the changes of the above two indexes with the increase of access scale, and considers the trade-off between the two. It is revealed by the above analysis that some guiding rules of UMA coding design. Finally, the open problems and potentials in this field are given for future research.
  • FEATURE TOPIC:COLLABORATIVE INTELLIGENCE FOR VEHICULAR INTERNET OF THINGS
    Xuting Duan, Hang Jiang, Daxin Tian, Tianyuan Zou, Jianshan Zhou, Yue Cao
    China Communications. 2021, 18(7): 1-12.
    In recent years, autonomous driving technology has made good progress, but the non-cooperative intelligence of vehicle for autonomous driving still has many technical bottlenecks when facing urban road autonomous driving challenges. V2I (Vehicle-to-Infrastructure) communication is a potential solution to enable cooperative intelligence of vehicles and roads. In this paper, the RGB-PVRCNN, an environment perception framework, is proposed to improve the environmental awareness of autonomous vehicles at intersections by leveraging V2I communication technology. This framework integrates vision feature based on PVRCNN. The normal distributions transform(NDT) point cloud registration algorithm is deployed both on onboard and roadside to obtain the position of the autonomous vehicles and to build the local map objects detected by roadside multi-sensor system are sent back to autonomous vehicles to enhance the perception ability of autonomous vehicles for benefiting path planning and traffic efficiency at the intersection. The field-testing results show that our method can effectively extend the environmental perception ability and range of autonomous vehicles at the intersection and outperform the PointPillar algorithm and the VoxelRCNN algorithm in detection accuracy.
  • SECURITY SCHEMES AND SOLUTIONS
    LI Wei, ZENG Xiaoyang, NAN Longmei, CHEN Tao, DAI Zibin
    China Communications. 2016, 13(1): 91-99.
    An Efficient and flexible implementation of block ciphers is critical to achieve information security processing. Existing implementation methods such as GPP, FPGA and cryptographic application-specific ASIC provide the broad range of support. However, these methods could not achieve a good tradeoff between high-speed processing and flexibility. In this paper, we present a reconfigurable VLIW processor architecture targeted at block cipher processing, analyze basic operations and storage characteristics, and propose the multi-cluster register-file structure for block ciphers. As for the same operation element of block ciphers, we adopt reconfigurable technology for multiple cryptographic processing units and interconnection scheme. The proposed processor not only flexibly accomplishes the combination of multiple basic cryptographic operations, but also realizes dynamic configuration for cryptographic processing units. It has been implemented with 0.18µmCMOS technology, the test results show that the frequency can reach 350MHz, and power consumption is 420mw. Ten kinds of block and hash ciphers were realized in the processor. The encryption throughput of AES, DES, IDEA, and SHA-1 algorithm is 1554Mbps, 448Mbps, 785Mbps, and 424Mbps respectively, the test result shows that our processor’s encryption performance is significantly higher than other designs.
  • Guest Editorial
    Min Sheng, Di Zhou, Weigang Bai, Junyu Liu, Jiandong Li
    China Communications. 2022, 19(1): 64-76.
    The rapid development and continuous updating of the mega satellite constellation (MSC) have brought new visions for the future 6G coverage extension, where the global seamless signal coverage can realize ubiquitous services for user terminals. However, global traffic demands present non-uniform characteristics. Therefore, how to ensure the on-demand service coverage for the specific traffic demand, i.e., the ratio of traffic density to service requirement per unit area, is the core issue of 6G wireless coverage extension exploiting the MSC. To this regard, this paper first discusses the open challenges to reveal the future direction of 6G wireless coverage extension from the perspective of key factors affecting service coverage performance, i.e., the network access capacity, space segment capacity and their matching-relationship. Furthermore, we elaborate on the key factors affecting effective matchings of the aforementioned aspects, thereby improving service coverage capability.
  • FEATURE TOPIC:COLLABORATIVE INTELLIGENCE FOR VEHICULAR INTERNET OF THINGS
    Liang Zhao, Muhammad Bin Saif, Ammar Hawbani, Geyong Min, Su Peng, Na Lin
    China Communications. 2021, 18(7): 103-116.
    Flying Ad hoc Network (FANET) has drawn significant consideration due to its rapid advancements and extensive use in civil applications. However, the characteristics of FANET including high mobility, limited resources, and distributed nature, have posed a new challenge to develop a secure and efficient routing scheme for FANET. To overcome these challenges, this paper proposes a novel cluster based secure routing scheme, which aims to solve the routing and data security problem of FANET. In this scheme, the optimal cluster head selection is based on residual energy, online time, reputation, blockchain transactions, mobility, and connectivity by using Improved Artificial Bee Colony Optimization (IABC). The proposed IABC utilizes two different search equations for employee bee and onlooker bee to enhance convergence rate and exploitation abilities. Further, a lightweight blockchain consensus algorithm, AI-Proof of Witness Consensus Algorithm (AI-PoWCA) is proposed, which utilizes the optimal cluster head for mining. In AI-PoWCA, the concept of the witness for block verification is also involved to make the proposed scheme resource efficient and highly resilient against 51% attack. Simulation results demonstrate that the proposed scheme outperforms its counterparts and achieves up to 90% packet delivery ratio, lowest end-to-end delay, highest throughput, resilience against security attacks, and superior in block processing time.
  • NETWORKS & SECURITY
    Mengke Yang, Movahedipour Mahmood, Xiaoguang Zhou, Salam Shafaq, Latif Zahid
    China Communications. 2017, 14(10): 180-191.
    Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main applications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and handling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle terminals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of intelligent logistics cloud platform containing software layer (SaaS), platform layer (PaaS) and infrastructure (IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, heterogeneous terminal data access, encapsulation and data mining. Therefore, intelligent logistics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-win logistics ecological system and the benign development of the ICT industry in the trend of intellectualization in China.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Pan Tang, Jianhua Zhang, Haoyu Tian, Zhaowei Chang, Jun Men, Yuxiang Zhang, Lei Tian, Liang Xia, Qixing Wang, Jingsuo He
    China Communications. 2021, 18(5): 19-32.
    Terahertz (THz) communication has been envisioned as a key enabling technology for sixth-generation (6G). In this paper, we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz. Furthermore, the path loss is analyzed and modeled by using two single-frequency path loss models and a multiple-frequencies path loss model. It is found that at most frequency points, the measured path loss is larger than that in the free space. But at around 310 GHz, the propagation attenuation is relatively weaker compared to that in the free space. Also, the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1. Moreover, the cellular performance of THz communication systems is investigated by using the obtained path loss model. Simulation results indicate that the current inter-site distance (ISD) for the indoor scenario is too small for THz communications. Furthermore, the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands. Generally, this work can give an insight into the design and optimization of THz communication systems for 6G.
  • REVIEW PAPER
    Haotong Cao, Longxiang Yang, Zeyuan Liu, Mengting Wu
    China Communications. 2016, 13(6): 48-62.
    Network virtualization is an enabling technology of running multiple virtual networks on a shared substrate network. It aims to deal with the ossification of current network architecture. As a crucial component of network virtualization, virtual network embedding (VNE) can efficiently and effectively allocates the substrate resource to proposed virtual network requests. According to the optimization strategy, VNE approaches can be classified into three categories: exact, heuristic and meta-heuristic solution. The VNE exact solution is the foundation of its corresponding heuristic and meta-heuristic solutions. This paper presents a survey of existing typical VNE exact solutions, and open problems for the future research of VNE exact solutions are proposed.
  • SPECIAL FOCUS
    Lihui Wang, Dongya Shen, Qiuhua Lin, Zhiyong Luo, Wenjian Wang, Jianpei Chen, Zhao Gao, Wei Zhang
    China Communications. 2023, 20(11): 1-12. DOI: https://doi.org/10.23919/JCC.fa.2023-0255.202311

    In this paper, an integrated substrate gap waveguide (ISGW) filtering antenna is proposed at millimeter wave band, whose surface wave and spurious modes are simultaneously suppressed. A second-order filtering response is obtained through a coupling feeding scheme using one uniform impedance resonator (UIR) and two stepped-impedance resonators (SIRs). To increase the stopband width of the antenna, the spurious modes are suppressed by selecting the appropriate sizes of the ISGW unit cell. Furthermore, the ISGW is implemented to improve the radiation performance of the antenna by alleviating the propagation of surface wave. And an equivalent circuit is investigated to reveal the working principle of ISGW. To demonstrate this methodology, an ISGW filtering antenna operating at a center frequency of 25 GHz is designed, fabricated, and measured. The results show that the antenna achieves a stopband width of 1.6$f_0$ (center frequency), an out-of-band suppression level of 21 dB, and a peak realized gain of 8.5 dBi.

  • Guest Editorial
    Qihui Wu, Min Zhang, Chao Dong, Yong Feng, Yanli Yuan, Simeng Feng, Tony Q. S. Quek
    China Communications. 2022, 19(1): 186-201.
    In recent years, with the growth in Unmanned Aerial Vehicles (UAVs), UAV-based systems have become popular in both military and civil applications.In these scenarios, the lack of reliable communication infrastructure has motivated UAVs to establish a network as flying nodes, also known as Flying Ad Hoc Networks (FANETs).However, in FANETs, the high mobility degree of flying and terrestrial users may be responsible for constant changes in the network topology, making end-to-end connections in FANETs challenging.Mobility estimation and prediction of UAVs can address the challenge mentioned above since it can provide better routing planning and improve overall FANET performance in terms of continuous service availability.We thus develop a Software Defined Network (SDN)-based heterogeneous architecture for reliable communication in FANETs.In this architecture, we apply an Extended Kalman Filter (EKF) for accurate mobility estimation and prediction of UAVs.In particular, we formulate the routing problem in SDN-based Heterogeneous FANETs as a graph decision problem.As the problem is NP-hard, we further propose a Directional Particle Swarming Optimization (DPSO) approach to solve it.The extensive simulation results demonstrate that the proposed DPSO routing can exhibit superior performance in improving the goodput, packet delivery ratio, and delay.
  • Guest Editorial
    Ximu Zhang, Min Jia, Xuemai Gu, Qing Guo
    China Communications. 2021, 18(12): 108-118.
    Cloud-based satellite and terrestrial spectrum shared networks (CB-STSSN) combines the triple advantages of efficient and flexible network management of heterogeneous cloud access (H-CRAN), vast coverage of satellite networks, and good communication quality of terrestrial networks. Thanks to the complementary coverage characteristics, anytime and anywhere high-speed communications can be achieved to meet the various needs of users. The scarcity of spectrum resources is a common problem in both satellite and terrestrial networks. In order to improve resource utilization, the spectrum is shared not only within each component but also between satellite beams and terrestrial cells, which introduces inter-component interferences. To this end, this paper first proposes an analytical framework which considers the inter-component interferences induced by spectrum sharing (SS). An intelligent SS scheme based on radio map (RM) consisting of LSTM-based beam prediction (BP), transfer learning-based spectrum prediction (SP) and joint non-preemptive priority and preemptive priority (J-NPAP)-based proportional fair spectrum allocation is than proposed. The simulation result shows that the spectrum utilization rate of CB-STSSN is improved and user blocking rate and waiting probability are decreased by the proposed scheme.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Shanyun Liu, Xianbin Yu, Rongbin Guo, Yajie Tang, Zhifeng Zhao
    China Communications. 2021, 18(5): 33-49.
    For the sake of meeting the demand of data rates at terabit (Tbit) per second scale in future networks, the terahertz (THz) band is widely accepted as one of the potential key enabling technologies for next generation wireless communication systemsWith the progressive development of THz devices, regrading THz communications at system level is increasing crucial and captured the interest of plenty of researchersWithin this scope, THz channel modeling serves as an indispensable and fundamental elementBy surveying the latest literature findings, this paper reviews the problem of channel modeling in the THz band, with an emphasis on molecular absorption loss, misalignment fading and multipath fading, which are major influence factors in the THz channel modelingThen, we focus on simulators and experiments in the THz band, after which we give a brief introduction on applications of THz channel models with respects to capacity, security, and sensing as examplesFinally, we discuss some key issues in the future THz channel modeling.
  • FEATURE TOPIC: EVOLUTIONARY TRENDS OF INTELLIGENT IOT NETWORKING FOR COMMERCIAL AND INDUSTRIAL USE CASES
    Jijun Ren, Peng Zhu, Zhiyuan Ren
    China Communications. 2023, 20(8): 1-16. DOI: https://doi.org/10.23919/JCC.fa.2022-0705.202308

    With the rapid development of the Industrial Internet of Things (IIoT), the traditional centralized cloud processing model has encountered the challenges of high communication latency and high energy consumption in handling industrial big data tasks. This paper aims to propose a low-latency and low-energy path computing scheme for the above problems. This scheme is based on the cloud-fog network architecture. The computing resources of fog network devices in the fog computing layer are used to complete task processing step by step during the data interaction from industrial field devices to the cloud center. A collaborative scheduling strategy based on the particle diversity discrete binary particle swarm optimization (PDBPSO) algorithm is proposed to deploy manufacturing tasks to the fog computing layer reasonably. The task in the form of a directed acyclic graph (DAG) is mapped to a factory fog network in the form of an undirected graph (UG) to find the appropriate computing path for the task, significantly reducing the task processing latency under energy consumption constraints. Simulation experiments show that this scheme's latency performance outperforms the strategy that tasks are wholly offloaded to the cloud and the strategy that tasks are entirely offloaded to the edge equipment.

  • SECURITY SCHEMES AND SOLUTIONS
    ZHAO Guosheng, WANG Jian
    China Communications. 2016, 13(1): 150-160.
    There are a lot of security issues in block cipher algorithm. Security analysis and enhanced design of a dynamic block cipher was proposed. Firstly, the safety of ciphertext was enhanced based on confusion substitution of S-box, thus disordering the internal structure of data blocks by four steps of matrix transformation. Then, the diffusivity of ciphertext was obtained by cyclic displacement of bytes using column ambiguity function. The dynamic key was finally generated by using LFSR, which improved the stochastic characters of secret key in each of round of iteration. The safety performance of proposed algorithm was analyzed by simulation test. The results showed the proposed algorithm has a little effect on the speed of encryption and decryption while enhancing the security. Meanwhile, the proposed algorithm has highly scalability, the dimension of S-box and the number of register can be dynamically extended according to the security requirement.
  • Guest Editorial
    Xiaoyun Wang, Tao Sun, Xiaodong Duan, Dan Wang, Yongjing Li, Ming Zhao, Zhigang Tian
    China Communications. 2022, 19(1): 14-28.
    The Service-based Architecture (SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, SBA for Space-Air-Ground Integrated Network (SAGIN) is investigated to enable the 5G integration deployment. This paper proposes a novel Holistic Service-based Architecture (H-SBA) for SAGIN of 5G-Advanced and beyond, i.e., 6G. The H-SBA introduces the concept of end-to-end service-based architecture design. The “Network Function Service”, introduced in 5G SBA, is extended from Control Plane to User Plane, from core network to access network. Based on H-SBA, the new generation of protocol design is proposed, which proposes to use IETF QUIC and SRv6 to substitute 5G HTTP/2.0 and GTP-U. Testing results show that new protocols can achieve low latency and high throughput, making them promising candidate for H-SBA.
  • Guest Editorial
    Jie Liu, Jun Zhang, Qi Zhang, Jue Wang, Xinghua Sun
    China Communications. 2021, 18(3): 52-62.
    In this paper, a reconfigurable intelligent surface (RIS)-assisted MIMO wireless secure communication system is considered, in which a base station (BS) equipped with multiple antennas exploits statistical channel state information to communicate with a legitimate multi-antenna user, in the presence of an eavesdropper, also equipped with multiple antennas. We firstly obtain an analytical expression of the ergodic secrecy rate based on the results of large-dimensional random matrix theory. Then, a jointly alternating optimization algorithm with the method of Taylor series expansion and the projected gradient ascent method is proposed to design the transmit covariance matrix at the BS, as well as the diagonal phase-shifting matrix to maximize the ergodic secrecy rate. Simulations are conducted to demonstrate the accuracy of the derived analytical expressions, as well as the superior performance of our proposed algorithm.
  • 6G TOWARDS 2030: FROM KEY TECHNOLOGY TO NETWORK ARCHITECTURE
    Yanfei Dong, Jincheng Dai, Kai Niu, Sen Wang, Yifei Yuan
    China Communications. 2022, 19(3): 101-115.
    In order to provide ultra low-latency and high energy-efficient communication for intelligences, the sixth generation (6G) wireless communication networks need to break out of the dilemma of the depleting gain of the separated optimization paradigm. In this context, this paper provides a comprehensive tutorial that overview how joint source-channel coding (JSCC) can be employed for improving overall system performance. For the purpose, we first introduce the communication requirements and performance metrics for 6G. Then, we provide an overview of the source-channel separation theorem and why it may not hold in practical applications. In addition, we focus on two new JSCC schemes called the double low-density parity-check (LDPC) codes and the double polar codes, respectively, giving their detailed coding and decoding processes and corresponding performance simulations. In a nutshell, this paper constitutes a tutorial on the JSCC scheme tailored to the needs of future 6G communications.
  • FEATURE TOPIC: INTEGRATED TERRESTRIALSATELLITE NETWORKS
    Xiangming Meng, Sheng Wu, Michael Riis Andersen, Jiang Zhu, Zuyao Ni
    China Communications. 2018, 15(6): 1-17.
    Due to limited volume, weight and power consumption, micro-satellite has to reduce data transmission and storage capacity by image compression when performs earth observation missions. However, the quality of images may be unsatisfied. This paper considers the problem of recovering sparse signals by exploiting their unknown sparsity pattern. To model structured sparsity, the prior correlation of the support is encoded by imposing a transformed Gaussian process on the spike and slab probabilities. Then, an efficient approximate message-passing algorithm with structured spike and slab prior is derived for posterior inference, which, combined with a fast direct method, reduces the computational complexity significantly. Further, a unified scheme is developed to learn the hyperparameters using expectation maximization (EM) and Bethe free energy optimization. Simulation results on both synthetic and real data demonstrate the superiority of the proposed algorithm.
  • SERVICES AND APPLICATIONS
    Xiaolin Gui, Jun Liu, Mucong Chi, Chenyu Li, Zhenming Lei
    China Communications. 2016, 13(8): 209-221.
    Security and privacy issues are magnified by velocity, volume, and variety of big data. User’s privacy is an even more sensitive topic attracting most people’s attention. While XcodeGhost, a malware of iOS emerging in late 2015, leads to the privacy-leakage of a large number of users, only a few studies have examined XcodeGhost based on its source code. In this paper we describe observations by monitoring the network activities for more than 2.59 million iPhone users in a provincial area across 232 days. Our analysis reveals a number of interesting points. For example, we propose a decay model for the prevalence rate of XcodeGhost and we find that the ratio of the infected devices is more than 60%; that a lot of popular applications, such as Wechat, railway 12306, didi taxi, Youku video are also infected; and that the duration as well as the traffic volume of most XcodeGhost-related HTTP-requests is similar with usual HTTP-request which makes it difficult to be found. Besides, we propose a heuristic model based on fingerprint and its web-knowledge to identify the infected applications. The identifying result shows the efficiency of this model.
  • BRAIN-COMPUTER-INTERFACE INSPIRED COMMUNICATIONS
    Xuelin Gu, Banghua Yang, Shouwei Gao, Honghao Gao, Linfeng Yan, Ding Xu, Wen Wang
    China Communications. 2022, 19(2): 62-72.
    After abusing drugs for long, drug users will experience deteriorated self-control cognitive ability, and poor emotional regulation. This paper designs a closed-loop virtual-reality (VR), motorimagery (MI) rehabilitation training system based on brain-computer interface (BCI) (MI-BCI+VR), aiming to enhance the self-control, cognition, and emotional regulation of drug addicts via personalized rehabilitation schemes. This paper is composed of two parts. In the first part, data of 45 drug addicts (mild: 15; moderate: 15; and severe: 15) is tested with electroencephalogram (EEG) and near-infrared spectroscopy (NIRS) equipment (EEG-NIRS) under the dual-mode, synchronous signal collection paradigm. Using these data sets, a dual-modal signal convolutional neural network (CNN) algorithm is then designed based on decision fusion to detect and classify the addiction degree. In the second part, the MIBCI+ VR rehabilitation system is designed, optimizing the Filter Bank Common Spatial Pattern (FBCSP) algorithm used in MI, and realizing MI-EEG intention recognition. Eight VR rehabilitation scenes are devised, achieving the communication between MI-BCI and VR scene models. Ten subjects are selected to test the rehabilitation system offline and online, and the test accuracy verifies the feasibility of the system. In future, it is suggested to develop personalized rehabilitation programs and treatment cycles based on the addiction degree.
  • FEATURE TOPIC:COLLABORATIVE INTELLIGENCE FOR VEHICULAR INTERNET OF THINGS
    Xin Hu, Sujie Xu, Libing Wang, Yin Wang, Zhijun Liu, Lexi Xu, You Li, Weidong Wang
    China Communications. 2021, 18(7): 25-35.
    Vehicular communications have recently attracted great interest due to their potential to improve the intelligence of the transportation system. When maintaining the high reliability and low latency in the vehicle-to-vehicle (V2V) links as well as large capacity in the vehicle-to-infrastructure (V2I) links, it is essential to flexibility allocate the radio resource to satisfy the different requirements in the V2V communication. This paper proposes a new radio resources allocation system for V2V communications based on the proximal strategy optimization method. In this radio resources allocation framework, a vehicle or V2V link that is designed as an agent. And through interacting with the environment, it can learn the optimal policy based on the strategy gradient and make the decision to select the optimal sub-band and the transmitted power level. Because the proposed method can output continuous actions and multi-dimensional actions, it greatly reduces the implementation complexity of large-scale communication scenarios. The simulation results indicate that the allocation method proposed in this paper can meet the latency constraints and the requested capacity of V2V links under the premise of minimizing the interference to vehicle-to-infrastructure communications.
  • Guest Editorial
    Zhendong Mao, Mugen Peng, Xiqing Liu
    China Communications. 2021, 18(3): 29-38.
    Reconfigurable intelligent surface (RIS) can manipulate the wireless propagation environment by smartly adjusting the amplitude/phase in a programmable panel, enjoying the improved performance. The accurate acquisition of the instantaneous channel state information (CSI) in the cascaded RIS chain makes an indispensable contribution to the performance gains. However, it is quite challenging to estimate the CSI in a time-variant scenario due to the limited signal processing capability of the passive elements embedded in a RIS pannel. In this work, a channel estimation scheme for the RIS-assisted wireless communication system is proposed, which is demonstrated to perform well in a time-variant scenario. The cascaded RIS channel is modeled as a state-space model based upon the mobility situations. In addition, to fully exploit the time correlation of channel, Kalman filter is employed by taking the prior information of channels into account. Further, the optimal reflection coefficients are derived according to the minimum mean square error (MMSE) criterion. Numerical results show that the proposed methods exhibit superior performance if compared with a conventional channel estimation scheme.
  • BRAIN-COMPUTER-INTERFACE INSPIRED COMMUNICATIONS
    Yue Zhao, Guojun Dai, Xin Fang, Zhengxuan Wu, Nianzhang Xia, Yanping Jin, Hong Zeng
    China Communications. 2022, 19(2): 73-89.
    Cognitive state detection using electroencephalogram (EEG) signals for various tasks has attracted significant research attention. However, it is difficult to further improve the performance of crosssubject cognitive state detection. Further, most of the existing deep learning models will degrade significantly when limited training samples are given, and the feature hierarchical relationships are ignored. To address the above challenges, we propose an efficient interpretation model based on multiple capsule networks for cross-subject EEG cognitive state detection, termed as Efficient EEG-based Multi-Capsule Framework (E3GCAPS). Specifically, we use a selfexpression module to capture the potential connections between samples, which is beneficial to alleviate the sensitivity of outliers that are caused by the individual differences of cross-subject EEG. In addition, considering the strong correlation between cognitive states and brain function connection mode, the dynamic subcapsule-based spatial attention mechanism is introduced to explore the spatial relationship of multi-channel 1D EEG data, in which multichannel 1D data greatly improving the training efficiency while preserving the model performance. The effectiveness of the E3GCAPS is validated on the Fatigue-Awake EEG Dataset (FAAD) and the SJTU Emotion EEG Dataset (SEED). Experimental results show E3GCAPS can achieve remarkable results on the EEG-based cross-subject cognitive state detection under different tasks.
  • Guest Editorial
    Wenjing You, Chao Dong, Qihui Wu, Yuben Qu, Yulei Wu, Rong He
    China Communications. 2022, 19(1): 104-118.
    This paper establishes a new layered flying ad hoc networks (FANETs) system of mobile edge computing (MEC) supported by multiple UAVs, where the first layer of user UAVs can perform tasks such as area coverage, and the second layer of MEC UAVs are deployed as flying MEC sever for user UAVs with computing-intensive tasks. In this system, we first divide the user UAVs into multiple clusters, and transmit the tasks of the cluster members (CMs) within a cluster to its cluster head (CH). Then, we need to determine whether each CH' tasks are executed locally or offloaded to one of the MEC UAVs for remote execution (i.e., task scheduling), and how much resources should be allocated to each CH (i.e., resource allocation), as well as the trajectories of all MEC UAVs. We formulate an optimization problem with the aim of minimizing the overall energy consumption of all user UAVs, under the constraints of task completion deadline and computing resource, which is a mixed integer non-convex problem and hard to solve. We propose an iterative algorithm by applying block coordinate descent methods. To be specific, the task scheduling between CH UAVs and MEC UAVs, computing resource allocation, and MEC UAV trajectory are alternately optimized in each iteration. For the joint task scheduling and computing resource allocation subproblem and MEC UAV trajectory subproblem, we employ branch and bound method and continuous convex approximation technique to solve them, respectively. Extensive simulation results validate the superiority of our proposed approach to several benchmarks.
  • Shu Fu, Bibo Wu, Shaohua Wu, Fang Fang
    China Communications. 2021, 18(9): 24-36.
    The six-generation (6G) wireless network is expected to satisfy the requirements of ubiquitous connectivity and intelligent endogenous. Terrestrial-satellite networks (TSN) enable seamless coverage for terrestrial users in a wide area, making it very promising in 6G. As data traffic in TSNs surges, the integrated management for caching, computing, and communication (3C) has attracted much research attention. In this paper, we investigate the multi-resource management in the uplink and downlink transmission of TSN, respectively. In particularly, we aim to guarantee both throughput fairness and data security in the uplink transmission of TSN. Considering the intermittent communication of the satellite, we introduce two kinds of relays, i.e., terrestrial relays (TRs) and aerial relays (ARs) to improve the system throughput performance in the downlink transmission of TSN. Finally, we study a specific case of TSN with the uplink and downlink transmission, and the corresponding simulation results validate the effectiveness of our proposed schemes.
  • Guest Editorial
    Ziying Wu, Danfeng Yan
    China Communications. 2021, 18(11): 26-41.
    Multi-access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional Internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based vehicle-aware Multi-access Edge Computing network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.
  • SERVICES AND APPLICATIONS
    Fengye Hu, Lu Wang, Shanshan Wang, Xiaolan Liu, Gengxin He
    China Communications. 2016, 13(8): 198-208.
    Human body posture recognition has attracted considerable attention in recent years in wireless body area networks (WBAN). In order to precisely recognize human body posture, many recognition algorithms have been proposed. However, the recognition rate is relatively low. In this paper, we apply back propagation (BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude (SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4 postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.
  • Guest Editorial
    Yuanzhi He, Biao Sheng, Hao Yin, Di Yan, Yingchao Zhang
    China Communications. 2022, 19(1): 77-91.
    Resource allocation is an important problem influencing the service quality of multi-beam satellite communications. In multi-beam satellite communications, the available frequency bandwidth is limited, users requirements vary rapidly, high service quality and joint allocation of multi-dimensional resources such as time and frequency are required. It is a difficult problem needs to be researched urgently for multi-beam satellite communications, how to obtain a higher comprehensive utilization rate of multi-dimensional resources, maximize the number of users and system throughput, and meet the demand of rapid allocation adapting dynamic changed the number of users under the condition of limited resources, with using an efficient and fast resource allocation algorithm. In order to solve the multi-dimensional resource allocation problem of multi-beam satellite communications, this paper establishes a multi-objective optimization model based on the maximum the number of users and system throughput joint optimization goal, and proposes a multi-objective deep reinforcement learning based time-frequency two-dimensional resource allocation (MODRL-TF) algorithm to adapt dynamic changed the number of users and the timeliness requirements. Simulation results show that the proposed algorithm could provide higher comprehensive utilization rate of multi-dimensional resources, and could achieve multi-objective joint optimization, and could obtain better timeliness than traditional heuristic algorithms, such as genetic algorithm (GA) and ant colony optimization algorithm (ACO).
  • FEATURE TOPIC:COLLABORATIVE INTELLIGENCE FOR VEHICULAR INTERNET OF THINGS
    Sankar Sennan, Somula Ramasubbareddy, Sathiyabhama Balasubramaniyam, Anand Nayyar, Chaker Abdelaziz Kerrache, Muhammad Bilal
    China Communications. 2021, 18(7): 69-85.
    Internet of Vehicles (IoV) is an evolution of the Internet of Things (IoT) to improve the capabilities of vehicular ad -hoc networks (VANETs) in intelligence transport systems. The network topology in IoV paradigm is highly dynamic. Clustering is one of the promising solutions to maintain the route stability in the dynamic network. However, existing algorithms consume a considerable amount of time in the cluster head (CH) selection process. Thus, this study proposes a mobility aware dynamic clustering -based routing (MADCR) protocol in IoV to maximize the lifespan of networks and reduce the end -to -end delay of vehicles. The MADCR protocol consists of cluster formation and CH selection processes. A cluster is formed on the basis of Euclidean distance. The CH is then chosen using the mayfly optimization algorithm (MOA). The CH subsequently receives vehicle data and forwards such data to the Road Side Unit (RSU). The performance of the MADCR protocol is compared with that ofAnt Colony Optimization (ACO), Comprehensive Learning Particle Swarm Optimization (CLPSO), and Clustering Algorithm for Internet of Vehicles based on Dragonfly Optimizer (CAVDO). The proposed MADCR protocol decreases the end-to-end delay by 5-80 ms and increases the packet delivery ratio by 5%-15%.
  • 6G TOWARDS 2030: FROM KEY TECHNOLOGY TO NETWORK ARCHITECTURE
    Borui Zhao, Qimei Cui, Shengyuan Liang, Jinli Zhai, Yanzhao Hou, Xueqing Huang, Miao Pan, Xiaofeng Tao
    China Communications. 2022, 19(3): 50-69.
    As Information, Communications, and Data Technology (ICDT) are deeply integrated, the research of 6G gradually rises. Meanwhile, federated learning (FL) as a distributed artificial intelligence (AI) framework is generally believed to be the most promising solution to achieve “Native AI” in 6G. While the adoption of energy as a metric in AI and wireless networks is emerging, most studies still focused on obtaining high levels of accuracy, with little consideration on new features of future networks and their possible impact on energy consumption. To address this issue, this article focuses on green concerns in FL over 6G. We first analyze and summarize major energy consumption challenges caused by technical characteristics of FL and the dynamical heterogeneity of 6G networks, and model the energy consumption in FL over 6G from aspects of computation and communication. We classify and summarize the basic ways to reduce energy, and present several feasible green designs for FL-based 6G network architecture from three perspectives. According to the simulation results, we provide a useful guideline to researchers that different schemes should be used to achieve the minimum energy consumption at a reasonable cost of learning accuracy for different network scenarios and service requirements in FL-based 6G network.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Hongqi Zhang, Lu Zhang, Xianbin Yu
    China Communications. 2021, 18(5): 153-174.
    With the explosion of wireless data rates, the terahertz (THz) band (0.1-10 THz) is envisioned as a promising candidate to break the existing bandwidth bottleneck and satisfy the ever-increasing capacity demand. The THz wireless communications feature a number of attractive properties, such as potential terabit-per-second capacity and high energy efficiency. In this paper, an overview on the state-of-the-art THz communications is studied, with a special focus on key technologies of THz transceivers and THz communication systems. The recent progress on both electronic and photonic THz transmitters are presented, and then the THz receivers operating in direct- and heterodyne reception modes are individually surveyed. Based on the THz transceiver schemes, three kinds of THz wireless communication systems are reviewed, including solid-state electronic systems, photonics-assisted systems and all-photonics systems. The prospective key enabling technologies, corresponding challenges and research directions for lighting up high-speed THz communication systems are discussed as well.
  • BRAIN-COMPUTER-INTERFACE INSPIRED COMMUNICATIONS
    Lu Jiang, Weihua Pei, Yijun Wang
    China Communications. 2022, 19(2): 1-14.
    A brain-computer interface (BCI) system based on steady-state visual evoked potentials (SSVEP) was developed by four-class phase-coded stimuli. SSVEPs elicited by flickers at 60Hz, which is higher than the critical fusion frequency (CFF), were compared with those at 15Hz and 30Hz. SSVEP components in electroencephalogram (EEG) were detected using task related component analysis (TRCA) method. Offline analysis with 17 subjects indicated that the highest information transfer rate (ITR) was 29.80±4.65bpm with 0.5s data length for 60Hz and the classification accuracy was 70.07±4.15%. The online BCI system reached an averaged classification accuracy of 87.75±3.50% at 60Hz with 4s, resulting in an ITR of 16.73±1.63bpm. In particular, the maximum ITR for a subject was 80bpm with 0.5s at 60Hz. Although the BCI performance of 60Hz was lower than that of 15Hz and 30Hz, the results of the behavioral test indicated that, with no perception of flicker, the BCI system with 60Hz was more comfortable to use than 15Hz and 30Hz. Correlation analysis revealed that SSVEP with higher signal-to-noise ratio (SNR) corresponded to better classification performance and the improvement in comfortableness was accompanied by a decrease in performance. This study demonstrates the feasibility and potential of a user-friendly SSVEP-based BCI using imperceptible flickers.