Most Download

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All
  • Most Downloaded in Recent Month
  • Most Downloaded in Recent Year

Please wait a minute...
  • Select all
    |
  • SERVICES AND APPLICATIONS
    Danfeng Yan, Guang Zhou, Xuan Zhao, Yuan Tian, Fangchun Yang
    China Communications. 2016, 13(8): 244-257.
    Some research work has showed that public mood and stock market price have some relations in some degree. Although it is difficult to clear the relation, the research about the relation between stock market price and public mood is interested by some scientists. This paper tries to find the relationship between Chinese stock market and Chinese local Microblog. First, C-POMS (Chinese Profile of Mood States) was proposed to analyze sentiment of Microblog feeds. Then Granger causality test confirmed the relation between C-POMS analysis and price series. SVM and Probabilistic Neural Network were used to make prediction, and experiments show that SVM is better to predict stock market movements than Probabilistic Neural Network. Experiments also indicate that adding certain dimension of C-POMS as the input data will improve the prediction accuracy to 66.667%. Two dimensions to input data leads to the highest accuracy of 71.429%, which is about 20% higher than using only history stock data as the input data. This paper also compared the proposed method with the ROSTEA scores, and concluded that only the proposed method brings more accurate predicts.
  • COMMUNICATIONS THEORIES & SYSTEMS
    Huang Yuhong, Cui Chunfeng, Pan Chengkang, Hou Shuai, Sun Zhiwen, Lu Xian, Li Xinying, Yuan Yifei
    China Communications. 2025, 22(6): 1-23. DOI: https://doi.org/10.23919/JCC.ja.2023-0277
    Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology, including communication. In this review, we discuss the current state of quantum computing in communication and its potential applications in various areas such as network optimization, signal processing, and machine learning for communication. First, the basic principle of quantum computing, quantum physics systems, and quantum algorithms are analyzed. Then, based on the classification of quantum algorithms, several important basic quantum algorithms, quantum optimization algorithms, and quantum machine learning algorithms are discussed in detail. Finally, the basic ideas and feasibility of introducing quantum algorithms into communications are emphatically analyzed, which provides a reference to address computational bottlenecks in communication networks.
  • SECURITY SCHEMES AND SOLUTIONS
    TIAN Donghai, JIA Xiaoqi, CHEN Junhua, HU Changzhen
    China Communications. 2016, 13(1): 113-123.
    Recently, virtualization technologies have been widely used in industry. In order to monitor the security of target systems in virtualization environments, conventional methods usually put the security monitoring mechanism into the normal functionality of the target systems. However, these methods are either prone to be tempered by attackers or introduce considerable performance overhead for target systems. To address these problems, in this paper, we present a concurrent security monitoring method which decouples traditional serial mechanisms, including security event collector and analyzer, into two concurrent components. On one hand, we utilize the SIM framework to deploy the event collector into the target virtual machine. On the other hand, we combine the virtualization technology and multi-core technology to put the event analyzer into a trusted execution environment. To address the synchronization problem between these two concurrent components, we make use of Lamport’s ring buffer algorithm. Based on the Xen hypervisor, we have implemented a prototype system named COMO. The experimental results show that COMO can monitor the security of the target virtual machine concurrently within a little performance overhead.
  • COMMUNICATIONS THEORIES & SYSTEMS
    Qin Zhijin, Ying Jingkai, Xin Gangtao, Fan Pingyi, FengWei, Ge Ning, Tao Xiaoming
    China Communications. 2025, 22(6): 24-43. DOI: https://doi.org/10.23919/JCC.ja.2024-0188
    In recent years, deep learning-based semantic communications have shown great potential to enhance the performance of communication systems. This has led to the belief that semantic communications represent a breakthrough beyond the Shannon paradigm and will play an essential role in future communications. To narrow the gap between current research and future vision, after an overview of semantic communications, this article presents and discusses ten fundamental and critical challenges in today's semantic communication field. These challenges are divided into theory foundation, system design, and practical implementation. Challenges related to the theory foundation including semantic capacity, entropy, and rate-distortion are discussed first. Then, the system design challenges encompassing architecture, knowledge base, joint semantic-channel coding, tailored transmission scheme, and impairment are posed. The last two challenges associated with the practical implementation lie in cross-layer optimization for networks and standardization. For each challenge, efforts to date and thoughtful insights are provided.
  • REVIEW PAPER
    Haotong Cao, Longxiang Yang, Zeyuan Liu, Mengting Wu
    China Communications. 2016, 13(6): 48-62.
    Network virtualization is an enabling technology of running multiple virtual networks on a shared substrate network. It aims to deal with the ossification of current network architecture. As a crucial component of network virtualization, virtual network embedding (VNE) can efficiently and effectively allocates the substrate resource to proposed virtual network requests. According to the optimization strategy, VNE approaches can be classified into three categories: exact, heuristic and meta-heuristic solution. The VNE exact solution is the foundation of its corresponding heuristic and meta-heuristic solutions. This paper presents a survey of existing typical VNE exact solutions, and open problems for the future research of VNE exact solutions are proposed.
  • COMMUNICATIONS THEORIES & SYSTEMS
    Qin Hao, Zhu Jia, Zou Yulong, Li Yizhi, Lou Yulei, Zhang Afei, Hui Hao, Qin Changjian
    China Communications. 2025, 22(6): 44-56. DOI: https://doi.org/10.23919/JCC.ja.2023-0672
    In this paper, we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface (ARIS)-assisted multi-antenna jamming (MAJ) scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission. In order to strike a balance between the jamming performance and the energy consumption, we consider a so-called jamming energy efficiency (JEE) which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption. We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer's beamforming vector and ARIS's reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user's detection threshold. To address the non-convex optimization problem, we propose the Dinkelbach-based alternating optimization (AO) algorithm by applying the semidefinite relaxation (SDR) algorithm with Gaussian randomization method. Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface (PRIS)-assisted multi-antenna jamming (PRIS-MAJ) scheme and the conventional multi-antenna jamming scheme without RIS (NRIS-MAJ) in terms of the JEE.
  • REVIEW PAPER
    Renzhi Yuan, Jianshe Ma
    China Communications. 2016, 13(6): 63-75.
    With rapid advances of solar blind ultraviolet LED and ultraviolet detecting technology in recent years, ultraviolet communication gradually becomes a research hotspot due to its inherent advantages: low solar background noise, non-line-of-sight(NLOS) and good secrecy. The strong scattering characteristics in atmospheric render ultraviolet waveband the ideal choice for achieving NLOS optical communication. This paper reviews the research history and status of ultraviolet communication both in China and abroad, and especially introduces three main issues of ultraviolet communication: channel model, system analysis and design, light sources and detectors. For each aspect, current open issues and prospective research directions are analyzed.
  • SERVICES AND APPLICATIONS
    Xiaolin Gui, Jun Liu, Mucong Chi, Chenyu Li, Zhenming Lei
    China Communications. 2016, 13(8): 209-221.
    Security and privacy issues are magnified by velocity, volume, and variety of big data. User’s privacy is an even more sensitive topic attracting most people’s attention. While XcodeGhost, a malware of iOS emerging in late 2015, leads to the privacy-leakage of a large number of users, only a few studies have examined XcodeGhost based on its source code. In this paper we describe observations by monitoring the network activities for more than 2.59 million iPhone users in a provincial area across 232 days. Our analysis reveals a number of interesting points. For example, we propose a decay model for the prevalence rate of XcodeGhost and we find that the ratio of the infected devices is more than 60%; that a lot of popular applications, such as Wechat, railway 12306, didi taxi, Youku video are also infected; and that the duration as well as the traffic volume of most XcodeGhost-related HTTP-requests is similar with usual HTTP-request which makes it difficult to be found. Besides, we propose a heuristic model based on fingerprint and its web-knowledge to identify the infected applications. The identifying result shows the efficiency of this model.
  • SECURITY SCHEMES AND SOLUTIONS
    ZHAO Bo, XIANG Shuang, AN Yang, TAO Wei
    China Communications. 2016, 13(1): 161-175.
    This paper analyzes the threat of TCG Software Stack (TSS)/TCM Service Module (TSM) deadlock in multi-user environment such as cloud and discusses its causes and mechanism. In addition, this paper puts forward a dynamic priority task scheduling strategy based on value evaluation to handle this threat. The strategy is based on the implementation features of trusted hardware and establishes a multi-level ready queue. In this strategy, an algorithm for real-time value computing is also designed, and it can adjust the production curves of the real time value by setting parameters in different environment, thus enhancing its adaptability, which is followed by scheduling and algorithm description. This paper also implements the algorithm and carries out its performance optimization. Due to the experiment result from Intel NUC, it is shown that TSS based on advanced DPTSV is able to solve the problem of deadlock with no negative influence on performance and security in multi-user environment.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Zhi Chen, Xinying Ma, Chong Han, Qiye Wen
    China Communications. 2021, 18(5): 93-119.
    Terahertz (THz) communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation (6G) wireless networks. In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves, an intelligent reflecting surface (IRS), which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements, is proposed to create smart radio environments, improve spectrum efficiency and enhance coverage capability. Firstly, some prospective application scenarios driven by the IRS empowered THz communications are introduced, including wireless mobile communications, secure communications, unmanned aerial vehicle (UAV) scenario, mobile edge computing (MEC) scenario and THz localization scenario. Then, we discuss the enabling technologies employed by the IRS empowered THz system, involving hardware design, channel estimation, capacity optimization, beam control, resource allocation and robustness design. Moreover, the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted. Concretely, these emerging problems possibly originate from channel modeling, new material exploration, experimental IRS testbeds and intensive deployment. Ultimately, the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.
  • SECURITY SCHEMES AND SOLUTIONS
    LI Wei, ZENG Xiaoyang, NAN Longmei, CHEN Tao, DAI Zibin
    China Communications. 2016, 13(1): 91-99.
    An Efficient and flexible implementation of block ciphers is critical to achieve information security processing. Existing implementation methods such as GPP, FPGA and cryptographic application-specific ASIC provide the broad range of support. However, these methods could not achieve a good tradeoff between high-speed processing and flexibility. In this paper, we present a reconfigurable VLIW processor architecture targeted at block cipher processing, analyze basic operations and storage characteristics, and propose the multi-cluster register-file structure for block ciphers. As for the same operation element of block ciphers, we adopt reconfigurable technology for multiple cryptographic processing units and interconnection scheme. The proposed processor not only flexibly accomplishes the combination of multiple basic cryptographic operations, but also realizes dynamic configuration for cryptographic processing units. It has been implemented with 0.18µmCMOS technology, the test results show that the frequency can reach 350MHz, and power consumption is 420mw. Ten kinds of block and hash ciphers were realized in the processor. The encryption throughput of AES, DES, IDEA, and SHA-1 algorithm is 1554Mbps, 448Mbps, 785Mbps, and 424Mbps respectively, the test result shows that our processor’s encryption performance is significantly higher than other designs.
  • FEATURE TOPIC: INTEGRATED TERRESTRIALSATELLITE NETWORKS
    Xiangming Meng, Sheng Wu, Michael Riis Andersen, Jiang Zhu, Zuyao Ni
    China Communications. 2018, 15(6): 1-17.
    Due to limited volume, weight and power consumption, micro-satellite has to reduce data transmission and storage capacity by image compression when performs earth observation missions. However, the quality of images may be unsatisfied. This paper considers the problem of recovering sparse signals by exploiting their unknown sparsity pattern. To model structured sparsity, the prior correlation of the support is encoded by imposing a transformed Gaussian process on the spike and slab probabilities. Then, an efficient approximate message-passing algorithm with structured spike and slab prior is derived for posterior inference, which, combined with a fast direct method, reduces the computational complexity significantly. Further, a unified scheme is developed to learn the hyperparameters using expectation maximization (EM) and Bethe free energy optimization. Simulation results on both synthetic and real data demonstrate the superiority of the proposed algorithm.
  • FEATURE TOPIC: INTEGRATED TERRESTRIALSATELLITE NETWORKS
    Peilong Liu, Hongyu Chen, Songjie Wei, Limin Li, Zhencai Zhu
    China Communications. 2018, 15(6): 28-41.
    To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, these schemes may lead to cascading congestion in regions with high volume of traffic. To solve this problem, a Hybrid-Traffic-Detour based Load Balancing Routing (HLBR) scheme is proposed, where a Long-Distance Traffic Detour (LTD) method is devised and coordinates with distributed traffic detour method to perform self-adaptive load balancing. The forwarding path of LTD is acquired by the Circuitous Multipath Calculation (CMC) based on prior geographical information, and activated by the LTD- Shift-Trigger (LST) through real-time congestion perception. Simulation results show that the HLBR can mitigate cascading congestion and achieve efficient traffic distribution.
  • 6G TOWARDS 2030: FROM KEY TECHNOLOGY TO NETWORK ARCHITECTURE
    Xiaofeng Zhong, Chenchen Fan, Shidong Zhou
    China Communications. 2022, 19(3): 145-157.
    Compared with wired communication, the wireless communication link is more vulnerable to be attacked or eavesdropped because of its broadcast nature. To prevent eavesdropping, many researches on transmission techniques or cryptographic methods are carried out. This paper proposes a new index parameter named as eavesdropping area, to evaluate the anti-eavesdropping performance of wireless system. Given the locations of legitimate transmitter and receiver, eavesdropping area index describes the total area of eavesdropping regions where messages can be wiretapped in the whole evaluating region. This paper gives detailed explanations about its concept and deduces mathematical formulas about performance curves based on region classification. Corresponding key system parameters are analyzed, including the characteristics of eavesdropping region, transmitted beam pattern, beam direction, receiver sensitivity, eavesdropping sensitivity, path loss exponent and so on. The proposed index can give an insight on the confirmation of high-risk eavesdropping region and formulating optimal transmitting scheme for the confidential communications to decrease the eavesdropping probability.
  • COMMUNICATION NETWORKS
    Jianyuan Feng, Zhiyong Feng, Zhiqing Wei
    China Communications. 2016, 13(8): 148-158.
    Although small cell offloading technology can alleviate the congestion in macrocell, aggressively offloading data traffic from macrocell to small cell can also degrade the performance of small cell due to the heavy load. Because of collision and backoff, the degradation is significant especially in network with contention-based channel access, and finally decreases throughput of the whole network. To find an optimal fraction of traffic to be offloaded in heterogeneous network, we combine Markov chain with the Poisson point process model to analyze contention-based throughput in irregularly deployment networks. Then we derive the close-form solution of the throughput and find that it is a function of the transmit power and density of base stations. Based on this, we propose the load-aware offloading strategies via power control and base station density adjustment. The numerical results verify our analysis and show a great performance gain compared with non-load-aware offloading.
  • FEATURE TOPIC:COLLABORATIVE INTELLIGENCE FOR VEHICULAR INTERNET OF THINGS
    Xuting Duan, Hang Jiang, Daxin Tian, Tianyuan Zou, Jianshan Zhou, Yue Cao
    China Communications. 2021, 18(7): 1-12.
    In recent years, autonomous driving technology has made good progress, but the non-cooperative intelligence of vehicle for autonomous driving still has many technical bottlenecks when facing urban road autonomous driving challenges. V2I (Vehicle-to-Infrastructure) communication is a potential solution to enable cooperative intelligence of vehicles and roads. In this paper, the RGB-PVRCNN, an environment perception framework, is proposed to improve the environmental awareness of autonomous vehicles at intersections by leveraging V2I communication technology. This framework integrates vision feature based on PVRCNN. The normal distributions transform(NDT) point cloud registration algorithm is deployed both on onboard and roadside to obtain the position of the autonomous vehicles and to build the local map objects detected by roadside multi-sensor system are sent back to autonomous vehicles to enhance the perception ability of autonomous vehicles for benefiting path planning and traffic efficiency at the intersection. The field-testing results show that our method can effectively extend the environmental perception ability and range of autonomous vehicles at the intersection and outperform the PointPillar algorithm and the VoxelRCNN algorithm in detection accuracy.
  • REVIEW PAPER
    LIU Dake, CAI Zhaoyun*, WANG Wei
    China Communications. 2016, 13(1): 1-16.
    Processors have been playing important roles in both communication infrastructure systems and terminals. In this paper, both application specific and general purpose processors for communications are discussed including the roles, the history, the current situations, and the trends. One trend is that ASIPs (Application Specific Instruction-set Processors) are taking over ASICs (Application Specific Integrated Circuits) because of the increasing needs both on performance and compatibility of multi-modes. The trend opened opportunities for researchers crossing the boundary between communications and computer architecture. Another trend is the serverlization, i.e., more infrastructure equipments are replaced by servers. The trend opened opportunities for researchers working towards high performance computing for communication, such as research on communication algorithm kernels and real time programming methods on servers.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Shanyun Liu, Xianbin Yu, Rongbin Guo, Yajie Tang, Zhifeng Zhao
    China Communications. 2021, 18(5): 33-49.
    For the sake of meeting the demand of data rates at terabit (Tbit) per second scale in future networks, the terahertz (THz) band is widely accepted as one of the potential key enabling technologies for next generation wireless communication systemsWith the progressive development of THz devices, regrading THz communications at system level is increasing crucial and captured the interest of plenty of researchersWithin this scope, THz channel modeling serves as an indispensable and fundamental elementBy surveying the latest literature findings, this paper reviews the problem of channel modeling in the THz band, with an emphasis on molecular absorption loss, misalignment fading and multipath fading, which are major influence factors in the THz channel modelingThen, we focus on simulators and experiments in the THz band, after which we give a brief introduction on applications of THz channel models with respects to capacity, security, and sensing as examplesFinally, we discuss some key issues in the future THz channel modeling.
  • Guest Editorial
    Yanpeng Dai, Bin Lin, Yudi Che, Ling Lyu
    China Communications. 2022, 19(1): 153-165.
    Smart containers have been extensively applied in the maritime industry by embracing the Internet of Things to realize container status monitoring and data offloading without human intervention. However, the offloading rate and delay in the offshore region are limited by the coverage of the onshore base station (BS). In this paper, we investigate the unmanned aerial vehicle (UAV)-assisted data offloading for smart containers in offshore maritime communications where the UAV is as a relay node between smart containers and onshore BS. We first consider the mobility of container vessel in the offshore region and establish a UAV-assisted data offloading model. Based on this model, a data offloading algorithm is proposed to reduce the average offloading delay under data-size requirements and available energy constraints of smart containers. Specifically, the convex-concave procedure is used to update time-slot assignment, offloading approach selection, and power allocation in an iterative manner. Simulation results show that the proposed algorithm can efficiently reduce average offloading delay and increase offloading success ratio. Moreover, it is shown that the UAV relay cannot always bring the performance gain on offloading delay especially in the close-to-shore area, which could give an insight on the deployment of UAV relay in offshore communications.
  • Guest Editorial
    Ziying Wu, Danfeng Yan
    China Communications. 2021, 18(11): 26-41.
    Multi-access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional Internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based vehicle-aware Multi-access Edge Computing network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Pan Tang, Jianhua Zhang, Haoyu Tian, Zhaowei Chang, Jun Men, Yuxiang Zhang, Lei Tian, Liang Xia, Qixing Wang, Jingsuo He
    China Communications. 2021, 18(5): 19-32.
    Terahertz (THz) communication has been envisioned as a key enabling technology for sixth-generation (6G). In this paper, we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz. Furthermore, the path loss is analyzed and modeled by using two single-frequency path loss models and a multiple-frequencies path loss model. It is found that at most frequency points, the measured path loss is larger than that in the free space. But at around 310 GHz, the propagation attenuation is relatively weaker compared to that in the free space. Also, the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1. Moreover, the cellular performance of THz communication systems is investigated by using the obtained path loss model. Simulation results indicate that the current inter-site distance (ISD) for the indoor scenario is too small for THz communications. Furthermore, the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands. Generally, this work can give an insight into the design and optimization of THz communication systems for 6G.
  • 6G TOWARDS 2030: FROM KEY TECHNOLOGY TO NETWORK ARCHITECTURE
    Zheng Hu, Ping Zhang, Chunhong Zhang, Benhui Zhuang, Jianhua Zhang, Shangjing Lin, Tao Sun
    China Communications. 2022, 19(3): 16-35.
    Sixth Generation (6G) wireless communication network has been expected to provide global coverage, enhanced spectral efficiency, and AI(Artificial Intelligence)-native intelligence, etc. To meet these requirements, the computational concept of Decision-Making of cognition intelligence, its implementation framework adapting to foreseen innovations on networks and services, and its empirical evaluations are key techniques to guarantee the generation-agnostic intelligence evolution of wireless communication networks. In this paper, we propose an Intelligent Decision Making (IDM) framework, acting as the role of network brain, based on Reinforcement Learning modelling philosophy to empower autonomous intelligence evolution capability to 6G network. Besides, usage scenarios and simulation demonstrate the generality and efficiency of IDM. We hope that some of the ideas of IDM will assist the research of 6G network in a new or different light.
  • SECURITY SCHEMES AND SOLUTIONS
    LIU Lizhao, LIU Jian, DAI Yaomei, XU Huarong, YIN Huayi, ZHU Shunzhi
    China Communications. 2016, 13(1): 100-112.
    Many websites use verification codes to prevent users from using the machine automatically to register, login, malicious vote or irrigate but it brought great burden to the enterprises involved in internet marketing as entering the verification code manually. Improving the verification code security system needs the identification method as the corresponding testing system. We propose an anisotropic heat kernel equation group which can generate a heat source scale space during the kernel evolution based on infinite heat source axiom, design a multi-step anisotropic verification code identification algorithm which includes core procedure ofbuilding anisotropic heat kernel, settingwave energy information parameters, combing outverification codecharacters and corresponding peripheral procedure of gray scaling, binarizing, denoising, normalizing, segmenting and identifying, give out the detail criterion and parameter set. Actual test show the anisotropic heat kernel identification algorithm can be used on many kinds of verification code including text characters, mathematical, chinese, voice, 3D, programming, video, advertising, it has a higher rate of 25% and 50% than neural network and context matching algorithm separately for Yahoo site, 49% and 60% for Captcha site, 20% and 52% for Baidu site, 60% and 65% for 3DTakers site, 40% and 51% for MDP site.
  • SERVICES AND APPLICATIONS
    Fengye Hu, Lu Wang, Shanshan Wang, Xiaolan Liu, Gengxin He
    China Communications. 2016, 13(8): 198-208.
    Human body posture recognition has attracted considerable attention in recent years in wireless body area networks (WBAN). In order to precisely recognize human body posture, many recognition algorithms have been proposed. However, the recognition rate is relatively low. In this paper, we apply back propagation (BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude (SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4 postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.
  • COMMUNICATIONS THEORIES & SYSTEMS
    Du Qiyuan, Duan Yiping, Tao Xiaoming
    China Communications. 2025, 22(6): 83-100. DOI: https://doi.org/10.23919/JCC.ja.2023-0606
    Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency. Semantic coding, which is oriented towards extracting and encoding the key semantics of video for transmission, is a key aspect in the framework of multimedia semantic communication. In this paper, we propose a facial video semantic coding method with low bitrate based on the temporal continuity of video semantics. At the sender's end, we selectively transmit facial keypoints and deformation information, allocating distinct bitrates to different keypoints across frames. Compressive techniques involving sampling and quantization are employed to reduce the bitrate while retaining facial key semantic information. At the receiver's end, a GAN-based generative network is utilized for reconstruction, effectively mitigating block artifacts and buffering problems present in traditional codec algorithms under low bitrates. The performance of the proposed approach is validated on multiple datasets, such as VoxCeleb and TalkingHead-1kH, employing metrics such as LPIPS, DISTS, and AKD for assessment. Experimental results demonstrate significant advantages over traditional codec methods, achieving up to approximately 10-fold bitrate reduction in prolonged, stable head pose scenarios across diverse conversational video settings.
  • FEATURE TOPIC: FUTURE INTERNET ARCHITECTURE AND TESTBEDS
    Renchao Xie, Zishu Li, Tao Huang, Yunjie Liu
    China Communications. 2017, 14(10): 70-83.
    Heterogeneous cellular networks (HCNs), by introducing caching capability, has been considered as a promising technique in 5G era, which can bring contents closer to users to reduce the transmission delay, save scarce bandwidth resource. Although many works have been done for caching in HCNs, from an energy perspective, there still exists much space to develop a more energy-efficient system when considering the fact that the majority of base stations are under-utilized in the most of the time. Therefore, in this paper, by taking the activation mechanism for the base stations into account, we study a joint caching and activation mechanism design to further improve the energy efficiency, then we formulate the optimization problem as an Integer Linear Programming problem (ILP) to maximize the system energy saving. Due to the enormous computation complexity for finding the optimal solution, we introduced a Quantum-inspired Evolutionary Algorithm (QEA) to iteratively provide the global best solution. Numerical results show that our proposed algorithm presents an excellent performance, which is far better than the strategy of only considering caching without deactivation mechanism in the actual, normal situation. We also provide performance comparison among our QEA, random sleeping algorithm and greedy algorithm, numerical results illustrate our introduced QEA performs best in accuracy and global optimality.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Hang Yang, Shilie Zheng, Wei He, Xianbin Yu, Xianmin Zhang
    China Communications. 2021, 18(5): 131-152.
    To accommodate the ever-increasing wireless capacity, the terahertz (THz) orbital angular momentum (OAM) beam that combines THz radiation and OAM technologies has attracted much attention recently, with contributing efforts to explore new dimensions in the THz region. In this paper, we provide an overview of the generation and detection techniques of THz-OAM beams, as well as their applications in communications. The principle and research status of typical generation and detection methods are surveyed, and the advantages and disadvantages of each method are summarized from a viewpoint of wireless communication. It is shown that developing novel THz components in generating, detecting and (de)multiplexing THz-OAM beams has become the key engine to drive this direction forward. Anyway, beneficial from the combination of infinite orthogonal modes and large bandwidth, THz-OAM beams will have great potential in delivering very large capacity in next generation wireless communications.
  • Guest Editorial
    Qihui Wu, Min Zhang, Chao Dong, Yong Feng, Yanli Yuan, Simeng Feng, Tony Q. S. Quek
    China Communications. 2022, 19(1): 186-201.
    In recent years, with the growth in Unmanned Aerial Vehicles (UAVs), UAV-based systems have become popular in both military and civil applications.In these scenarios, the lack of reliable communication infrastructure has motivated UAVs to establish a network as flying nodes, also known as Flying Ad Hoc Networks (FANETs).However, in FANETs, the high mobility degree of flying and terrestrial users may be responsible for constant changes in the network topology, making end-to-end connections in FANETs challenging.Mobility estimation and prediction of UAVs can address the challenge mentioned above since it can provide better routing planning and improve overall FANET performance in terms of continuous service availability.We thus develop a Software Defined Network (SDN)-based heterogeneous architecture for reliable communication in FANETs.In this architecture, we apply an Extended Kalman Filter (EKF) for accurate mobility estimation and prediction of UAVs.In particular, we formulate the routing problem in SDN-based Heterogeneous FANETs as a graph decision problem.As the problem is NP-hard, we further propose a Directional Particle Swarming Optimization (DPSO) approach to solve it.The extensive simulation results demonstrate that the proposed DPSO routing can exhibit superior performance in improving the goodput, packet delivery ratio, and delay.
  • COMMUNICATIONS THEORIES & SYSTEMS
    Huang Zhouyang, JiangWenjun, Yuan Xiaojun, Wang Li, Zuo Yong
    China Communications. 2025, 22(6): 154-167. DOI: https://doi.org/10.23919/JCC.ja.2022-0434
    In this paper, we focus on the channel estimation for multi-user MIMO-OFDM systems in rich scattering environments. We find that channel sparsity in the delay-angle domain is severely compromised in rich scattering environments, so that most existing compressed sensing (CS) based techniques can harvest a very limited gain (if any) in reducing the channel estimation overhead. To address the problem, we propose the learning-based turbo message passing (LTMP) algorithm. Instead of exploiting the channel sparsity, LTMP is able to efficiently extract the channel feature via deep learning as well as to exploit the channel continuity in the frequency domain via block-wise linear modelling. More specifically, as a component of LTMP, we develop a multi-scale parallel dilated convolutional neural network (MPDCNN), which leverages frequency-space channel correlation in different scales for channel denoising. We evaluate the LTMP's performance in MIMO-OFDM channels using the 3rd generation partnership project (3GPP) clustered delay line (CDL) channel models. Simulation results show that the proposed channel estimation method has more than 5 dB power gain than the existing algorithms when the normalized mean-square error of the channel estimation is -20 dB. The proposed algorithm also exhibits strong robustness in various environments.
  • SECURITY SCHEMES AND SOLUTIONS
    Thiruppathy Kesavan. V, Radhakrishnan. S
    China Communications. 2016, 13(6): 178-194.
    In Heterogeneous Wireless Sensor Networks, the mobility of the sensor nodes becomes essential in various applications. During node mobility, there are possibilities for the malicious node to become the cluster head or cluster member. This causes the cluster or the whole network to be controlled by the malicious nodes. To offer high level of security, the mobile sensor nodes need to be authenticated. Further, clustering of nodes improves scalability, energy efficient routing and data delivery. In this paper, we propose a cluster based secure dynamic keying technique to authenticate the nodes during mobility. The nodes with high configuration are chosen as cluster heads based on the weight value which is estimated using parameters such as the node degree, average distance, node’s average speed, and virtual battery power. The keys are dynamically generated and used for providing security. Even the keys are compromised by the attackers, they are not able to use the previous keys to cheat or disuse the authenticated nodes. In addition, a bidirectional malicious node detection technique is employed which eliminates the malicious node from the network. By simulation, it is proved that the proposed technique provides efficient security with reduced energy consumption during node mobility.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Hongqi Zhang, Lu Zhang, Xianbin Yu
    China Communications. 2021, 18(5): 153-174.
    With the explosion of wireless data rates, the terahertz (THz) band (0.1-10 THz) is envisioned as a promising candidate to break the existing bandwidth bottleneck and satisfy the ever-increasing capacity demand. The THz wireless communications feature a number of attractive properties, such as potential terabit-per-second capacity and high energy efficiency. In this paper, an overview on the state-of-the-art THz communications is studied, with a special focus on key technologies of THz transceivers and THz communication systems. The recent progress on both electronic and photonic THz transmitters are presented, and then the THz receivers operating in direct- and heterodyne reception modes are individually surveyed. Based on the THz transceiver schemes, three kinds of THz wireless communication systems are reviewed, including solid-state electronic systems, photonics-assisted systems and all-photonics systems. The prospective key enabling technologies, corresponding challenges and research directions for lighting up high-speed THz communication systems are discussed as well.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Yinian Feng, Bo Zhang, Chen Zhi, Ke Liu, Weilong Liu, Fang Shen, Chuanqi Qiao, Jicong Zhang, Yong Fan, Xiaobo Yang
    China Communications. 2021, 18(5): 210-220.
    With the successful demonstration of terahertz (THz) high-speed wireless data transmission, the THz frequencies are now becoming a worth candidate for post-5G wireless communications. On the other hand, to bring THz communications a step closer to real scenario application, solving high data rate real-time transmission is also an important issue. This paper describes a 220-GHz solid-state dual-carrier wireless link whose maximum transmission real-time data rates are 20.8 Gbps (10.4 Gbps per channel). By aggregating two carrier signals in the THz band, the contradiction between high real-time data rate communication and low sampling rate analog-to-digital (ADC) and digital-to-analog converter (DAC) is alleviated. The transmitting and receiving front-ends consist of 220-GHz diplexers, 220-GHz sub-harmonic mixers based on anti-parallel Schottky barrier diodes, G-band low-noise amplifiers (LNA), WR-4.3 band high-gain Cassegrain antennas, high data rates dual-DAC and -ADC baseband platform and other components. The low-density parity-check (LDPC) encoding is also realized to improve the bit error rate (BER) of the received signal. Modulated signals are centered at 214.4 GHz and 220.6 GHz with -11.9 dBm and -13.4 dBm output power for channel 1 and 2, respectively. This link is demonstrated to achieve 20.8-Gbps real-time data transmission using 16-QAM modulation over a distance of 1030 m. The measured signal to noise ratio (SNR) is 17.3 dB and 16.5 dB, the corresponding BER is 8.6e-7 and 3.8e-7, respectively. Furthermore, 4K video transmission is also carried out which is clear and free of stutter. The successful transmission of aggregated channels in this wireless link shows the great potential of THz communication for future wireless high-rate real-time data transmission applications.
  • Chen Zhang, Xudong Zhao, Gengxin Zhang
    China Communications. 2021, 18(9): 48-61.
    Beam hopping technology provides a foundation for the flexible allocation and efficient utilization of satellite resources, which is considered as a key technology for the next generation of high throughput satellite systems. To alleviate the contradiction between resource utilization and co-frequency interference in beam hopping technology, this paper firstly studies dynamic clustering to balance traffic between clusters and proposes cluster hopping pool optimization method to avoid inter-cluster interference. Then based on the optimization results, a novel joint beam hopping and precoding algorithm is provided to combine resource allocation and intra-cluster interference suppression, which can make efficient utilization of system resources and achieve reliable and near-optimal transmission capacity. The simulation results show that, compared with traditional methods, the proposed algorithms can dynamically adjust to balance demand traffic between clusters and meet the service requirements of each beam, also eliminate the co-channel interference to improve the performance of satellite network.
  • Guest Editorial
    Min Sheng, Di Zhou, Weigang Bai, Junyu Liu, Jiandong Li
    China Communications. 2022, 19(1): 64-76.
    The rapid development and continuous updating of the mega satellite constellation (MSC) have brought new visions for the future 6G coverage extension, where the global seamless signal coverage can realize ubiquitous services for user terminals. However, global traffic demands present non-uniform characteristics. Therefore, how to ensure the on-demand service coverage for the specific traffic demand, i.e., the ratio of traffic density to service requirement per unit area, is the core issue of 6G wireless coverage extension exploiting the MSC. To this regard, this paper first discusses the open challenges to reveal the future direction of 6G wireless coverage extension from the perspective of key factors affecting service coverage performance, i.e., the network access capacity, space segment capacity and their matching-relationship. Furthermore, we elaborate on the key factors affecting effective matchings of the aforementioned aspects, thereby improving service coverage capability.
  • 6G TOWARDS 2030: FROM KEY TECHNOLOGY TO NETWORK ARCHITECTURE
    Yanfei Dong, Jincheng Dai, Kai Niu, Sen Wang, Yifei Yuan
    China Communications. 2022, 19(3): 101-115.
    In order to provide ultra low-latency and high energy-efficient communication for intelligences, the sixth generation (6G) wireless communication networks need to break out of the dilemma of the depleting gain of the separated optimization paradigm. In this context, this paper provides a comprehensive tutorial that overview how joint source-channel coding (JSCC) can be employed for improving overall system performance. For the purpose, we first introduce the communication requirements and performance metrics for 6G. Then, we provide an overview of the source-channel separation theorem and why it may not hold in practical applications. In addition, we focus on two new JSCC schemes called the double low-density parity-check (LDPC) codes and the double polar codes, respectively, giving their detailed coding and decoding processes and corresponding performance simulations. In a nutshell, this paper constitutes a tutorial on the JSCC scheme tailored to the needs of future 6G communications.
  • STRATEGIES AND SCHEMES
    WANG Yajun, LIAO Tongqing, WANG Chuanan
    China Communications. 2016, 13(1): 176-184.
    In this paper, we consider a wireless ad hoc network consisting of multiple source nodes transmitting to their respective destinations, where an eavesdropper attempts to intercept their transmissions. We propose an optimal transmission scheduling scheme to defend against the eavesdropper, where a source node having the highest secrecy rate is scheduled to access the wireless medium for transmitting to its destination in an opportunistic manner. To be specific, the secrecy rate between a pair of the source and destination in the presence of an eavesdropper varies temporally due to the wireless fading effect. The proposed optimal transmission scheduling scheme opportunistically selects a source node with the highest secrecy rate to transmit its data for the sake of maximizing the security of the ad hoc network against eavesdropping attacks. For comparison purposes, we also consider the conventional round-robin scheduling as a benchmark, where multiple source nodes take turns in accessing their shared wireless medium for transmitting to their respective destinations. We derive closed-form secrecy outage probability expressions of both the round-robin scheduling and the proposed optimal scheduling schemes over Rayleigh fading environments. Numerical results show that the proposed transmission scheduling scheme outperforms the conventional round-robin method in terms of its secrecy outage probability. Additionally, upon increasing the number of source-destination pairs, the secrecy outage probability of the round-robin scheme keeps unchanged, whereas the secrecy outage performance of the proposed transmission scheduling significantly improves, showing the security benefits of exploiting transmission scheduling for protecting wireless ad hoc networks against eavesdropping.
  • Guest Editorial
    Kang Li, Yutao Jiao, Yehui Song, Jinghua Li, Chao Yue
    China Communications. 2021, 18(12): 65-80.
    In spectrum sharing systems, locating multiple radiation sources can efficiently find out the intruders, which protects the shared spectrum from malicious jamming or other unauthorized usage. Compared to single-source localization, simultaneously locating multiple sources is more challenging in practice since the association between measurement parameters and source nodes are not known. Moreover, the number of possible measurements-source associations increases exponentially with the number of sensor nodes. It is crucial to discriminate which measurements correspond to the same source before localization. In this work, we propose a centralized localization scheme to estimate the positions of multiple sources. Firstly, we develop two computationally light methods to handle the unknown RSS-AOA measurements-source association problem. One method utilizes linear coordinate conversion to compute the minimum spatial Euclidean distance summation of measurements. Another method exploits the long-short-term memory (LSTM) network to classify the measurement sequences. Then, we propose a weighted least squares (WLS) approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem. Numerical results demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial scenarios where the sources are in close proximity and the measurement noise is strong.
  • BRAIN-COMPUTER-INTERFACE INSPIRED COMMUNICATIONS
    Lu Jiang, Weihua Pei, Yijun Wang
    China Communications. 2022, 19(2): 1-14.
    A brain-computer interface (BCI) system based on steady-state visual evoked potentials (SSVEP) was developed by four-class phase-coded stimuli. SSVEPs elicited by flickers at 60Hz, which is higher than the critical fusion frequency (CFF), were compared with those at 15Hz and 30Hz. SSVEP components in electroencephalogram (EEG) were detected using task related component analysis (TRCA) method. Offline analysis with 17 subjects indicated that the highest information transfer rate (ITR) was 29.80±4.65bpm with 0.5s data length for 60Hz and the classification accuracy was 70.07±4.15%. The online BCI system reached an averaged classification accuracy of 87.75±3.50% at 60Hz with 4s, resulting in an ITR of 16.73±1.63bpm. In particular, the maximum ITR for a subject was 80bpm with 0.5s at 60Hz. Although the BCI performance of 60Hz was lower than that of 15Hz and 30Hz, the results of the behavioral test indicated that, with no perception of flicker, the BCI system with 60Hz was more comfortable to use than 15Hz and 30Hz. Correlation analysis revealed that SSVEP with higher signal-to-noise ratio (SNR) corresponded to better classification performance and the improvement in comfortableness was accompanied by a decrease in performance. This study demonstrates the feasibility and potential of a user-friendly SSVEP-based BCI using imperceptible flickers.
  • COMMUNICATIONS THEORIES & SYSTEMS
    Wang Yuhao, Xu Chuan, Yu Lisu, Lyu Xinxin, Chen Junyuan, Wang Zhenghai
    China Communications. 2025, 22(6): 180-192. DOI: https://doi.org/10.23919/JCC.ja.2023-0558
    Abstract: Sparse code multiple access (SCMA) is a non-orthogonal multiple access (NOMA) scheme based on joint modulation and spread spectrum coding. It is ideal for future communication networks with a massive number of nodes due to its ability to handle user overload. Introducing SCMA into visible light communication (VLC) systems can improve the data transmission capability of the system. However, designing a suitable codebook becomes a challenging problem when addressing the demands of massive connectivity scenarios. Therefore, this paper proposes a low-complexity design method for high-overload codebooks based on the minimum bit error rate (BER) criterion. Firstly, this paper constructs a new codebook with parameters based on the symmetric mother codebook structure by allocating the codeword power so that the power of each user codebook is unbalanced; then, the BER performance in the visible light communication system is optimized to obtain specific parameters; finally, the successive interference cancellation (SIC) detection algorithm is used at the receiver side. Simulation results show that the method proposed in this paper can converge quickly by utilizing a relatively small number of detection iterations. This can simultaneously reduce the complexity of design and detection, outperforming existing design methods for massive SCMA codebooks.% so as to reduce the out-of-band (OOB) radiation as much as possible. Parameters of the proposed scheme are solved under joint con-straints of constant power and unity cumulative distribution. A new receiving method is also proposed to improve the bit error rate (BER) performance of OFDM systems. Simulation results indicate the proposed scheme can achieve better OOB radiation and BER performance at same PAPR levels, compared with existing similar companding algorithms.
  • COMMUNICATIONS THEORIES & SYSTEMS
    Luo Chenke, Fu Jianming, Ming Jiang, Xie Mengfei, Peng Guojun
    China Communications. 2025, 22(6): 64-82. DOI: https://doi.org/10.23919/JCC.ja.2024-0077
    Memory-unsafe programming languages, such as C/C++, are often used to develop system programs, rendering the programs susceptible to a variety of memory corruption attacks. Among these threats, just-in-time return-oriented programming (JIT-ROP) stands out as an advanced method for conducting code-reuse attacks, effectively circumventing code randomization safeguards. JIT-ROP leverages memory disclosure vulnerabilities to obtain reusable code fragments dynamically and assemble malicious payloads dynamically. In response to JIT-ROP attacks, several re-randomization implementations have been developed to prevent the use of disclosed code. However, existing re-randomization methods require recurrent re-randomization during program runtime according to fixed time windows or specific events such as system calls, incurring significant runtime overhead.
    In this paper, we present the design and implementation of \mytool, an efficient re-randomization approach on the AArch64 platform. Unlike previous methods that necessitate frequent runtime re-randomization or reply on unreliable triggering conditions, this approach triggers the re-randomization process by detecting the code page harvest operation, which is a fundamental operation of the JIT-ROP attacks, making our method more efficient and reliable than previous approaches. We evaluate \mytool\ on benchmarks and real-world applications. The evaluation results show that our approach can effectively protect programs from JIT-ROP attacks while introducing marginal runtime overhead.