Most Download

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All
  • Most Downloaded in Recent Month
  • Most Downloaded in Recent Year

Please wait a minute...
  • Select all
    |
  • SERVICES AND APPLICATIONS
    Xiaolin Gui, Jun Liu, Mucong Chi, Chenyu Li, Zhenming Lei
    China Communications. 2016, 13(8): 209-221.
    Security and privacy issues are magnified by velocity, volume, and variety of big data. User’s privacy is an even more sensitive topic attracting most people’s attention. While XcodeGhost, a malware of iOS emerging in late 2015, leads to the privacy-leakage of a large number of users, only a few studies have examined XcodeGhost based on its source code. In this paper we describe observations by monitoring the network activities for more than 2.59 million iPhone users in a provincial area across 232 days. Our analysis reveals a number of interesting points. For example, we propose a decay model for the prevalence rate of XcodeGhost and we find that the ratio of the infected devices is more than 60%; that a lot of popular applications, such as Wechat, railway 12306, didi taxi, Youku video are also infected; and that the duration as well as the traffic volume of most XcodeGhost-related HTTP-requests is similar with usual HTTP-request which makes it difficult to be found. Besides, we propose a heuristic model based on fingerprint and its web-knowledge to identify the infected applications. The identifying result shows the efficiency of this model.
  • FEATURE TOPIC: INTEGRATED TERRESTRIALSATELLITE NETWORKS
    Peilong Liu, Hongyu Chen, Songjie Wei, Limin Li, Zhencai Zhu
    China Communications. 2018, 15(6): 28-41.
    To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, these schemes may lead to cascading congestion in regions with high volume of traffic. To solve this problem, a Hybrid-Traffic-Detour based Load Balancing Routing (HLBR) scheme is proposed, where a Long-Distance Traffic Detour (LTD) method is devised and coordinates with distributed traffic detour method to perform self-adaptive load balancing. The forwarding path of LTD is acquired by the Circuitous Multipath Calculation (CMC) based on prior geographical information, and activated by the LTD- Shift-Trigger (LST) through real-time congestion perception. Simulation results show that the HLBR can mitigate cascading congestion and achieve efficient traffic distribution.
  • REVIEW PAPER
    Renzhi Yuan, Jianshe Ma
    China Communications. 2016, 13(6): 63-75.
    With rapid advances of solar blind ultraviolet LED and ultraviolet detecting technology in recent years, ultraviolet communication gradually becomes a research hotspot due to its inherent advantages: low solar background noise, non-line-of-sight(NLOS) and good secrecy. The strong scattering characteristics in atmospheric render ultraviolet waveband the ideal choice for achieving NLOS optical communication. This paper reviews the research history and status of ultraviolet communication both in China and abroad, and especially introduces three main issues of ultraviolet communication: channel model, system analysis and design, light sources and detectors. For each aspect, current open issues and prospective research directions are analyzed.
  • REVIEW PAPER
    Haotong Cao, Longxiang Yang, Zeyuan Liu, Mengting Wu
    China Communications. 2016, 13(6): 48-62.
    Network virtualization is an enabling technology of running multiple virtual networks on a shared substrate network. It aims to deal with the ossification of current network architecture. As a crucial component of network virtualization, virtual network embedding (VNE) can efficiently and effectively allocates the substrate resource to proposed virtual network requests. According to the optimization strategy, VNE approaches can be classified into three categories: exact, heuristic and meta-heuristic solution. The VNE exact solution is the foundation of its corresponding heuristic and meta-heuristic solutions. This paper presents a survey of existing typical VNE exact solutions, and open problems for the future research of VNE exact solutions are proposed.
  • SERVICES AND APPLICATIONS
    Danfeng Yan, Guang Zhou, Xuan Zhao, Yuan Tian, Fangchun Yang
    China Communications. 2016, 13(8): 244-257.
    Some research work has showed that public mood and stock market price have some relations in some degree. Although it is difficult to clear the relation, the research about the relation between stock market price and public mood is interested by some scientists. This paper tries to find the relationship between Chinese stock market and Chinese local Microblog. First, C-POMS (Chinese Profile of Mood States) was proposed to analyze sentiment of Microblog feeds. Then Granger causality test confirmed the relation between C-POMS analysis and price series. SVM and Probabilistic Neural Network were used to make prediction, and experiments show that SVM is better to predict stock market movements than Probabilistic Neural Network. Experiments also indicate that adding certain dimension of C-POMS as the input data will improve the prediction accuracy to 66.667%. Two dimensions to input data leads to the highest accuracy of 71.429%, which is about 20% higher than using only history stock data as the input data. This paper also compared the proposed method with the ROSTEA scores, and concluded that only the proposed method brings more accurate predicts.
  • FEATURE TOPIC: INTEGRATED TERRESTRIALSATELLITE NETWORKS
    Xiangming Meng, Sheng Wu, Michael Riis Andersen, Jiang Zhu, Zuyao Ni
    China Communications. 2018, 15(6): 1-17.
    Due to limited volume, weight and power consumption, micro-satellite has to reduce data transmission and storage capacity by image compression when performs earth observation missions. However, the quality of images may be unsatisfied. This paper considers the problem of recovering sparse signals by exploiting their unknown sparsity pattern. To model structured sparsity, the prior correlation of the support is encoded by imposing a transformed Gaussian process on the spike and slab probabilities. Then, an efficient approximate message-passing algorithm with structured spike and slab prior is derived for posterior inference, which, combined with a fast direct method, reduces the computational complexity significantly. Further, a unified scheme is developed to learn the hyperparameters using expectation maximization (EM) and Bethe free energy optimization. Simulation results on both synthetic and real data demonstrate the superiority of the proposed algorithm.
  • SECURITY SCHEMES AND SOLUTIONS
    LIU Lizhao, LIU Jian, DAI Yaomei, XU Huarong, YIN Huayi, ZHU Shunzhi
    China Communications. 2016, 13(1): 100-112.
    Many websites use verification codes to prevent users from using the machine automatically to register, login, malicious vote or irrigate but it brought great burden to the enterprises involved in internet marketing as entering the verification code manually. Improving the verification code security system needs the identification method as the corresponding testing system. We propose an anisotropic heat kernel equation group which can generate a heat source scale space during the kernel evolution based on infinite heat source axiom, design a multi-step anisotropic verification code identification algorithm which includes core procedure ofbuilding anisotropic heat kernel, settingwave energy information parameters, combing outverification codecharacters and corresponding peripheral procedure of gray scaling, binarizing, denoising, normalizing, segmenting and identifying, give out the detail criterion and parameter set. Actual test show the anisotropic heat kernel identification algorithm can be used on many kinds of verification code including text characters, mathematical, chinese, voice, 3D, programming, video, advertising, it has a higher rate of 25% and 50% than neural network and context matching algorithm separately for Yahoo site, 49% and 60% for Captcha site, 20% and 52% for Baidu site, 60% and 65% for 3DTakers site, 40% and 51% for MDP site.
  • SECURITY SCHEMES AND SOLUTIONS
    LI Wei, ZENG Xiaoyang, NAN Longmei, CHEN Tao, DAI Zibin
    China Communications. 2016, 13(1): 91-99.
    An Efficient and flexible implementation of block ciphers is critical to achieve information security processing. Existing implementation methods such as GPP, FPGA and cryptographic application-specific ASIC provide the broad range of support. However, these methods could not achieve a good tradeoff between high-speed processing and flexibility. In this paper, we present a reconfigurable VLIW processor architecture targeted at block cipher processing, analyze basic operations and storage characteristics, and propose the multi-cluster register-file structure for block ciphers. As for the same operation element of block ciphers, we adopt reconfigurable technology for multiple cryptographic processing units and interconnection scheme. The proposed processor not only flexibly accomplishes the combination of multiple basic cryptographic operations, but also realizes dynamic configuration for cryptographic processing units. It has been implemented with 0.18µmCMOS technology, the test results show that the frequency can reach 350MHz, and power consumption is 420mw. Ten kinds of block and hash ciphers were realized in the processor. The encryption throughput of AES, DES, IDEA, and SHA-1 algorithm is 1554Mbps, 448Mbps, 785Mbps, and 424Mbps respectively, the test result shows that our processor’s encryption performance is significantly higher than other designs.
  • COMMUNICATIONS THEORIES & SYSTEMS
    Jingxuan Huang, Zesong Fei, Tianxiong Wang, Xinyi Wang, Fan Liu, Haijun Zhou, J. Andrew Zhang, Guohua Wei
    China Communications. 2019, 16(10): 100-111.
    With the development of automated driving vehicles, more and more vehicles will be fitted with more than one automotive radars, and the radar mutual interference will become very significant. Vehicle to everything (V2X) communication is a potential way for coordinating automotive radars and reduce the mutual interference. In this paper, we analyze the positional relation of the two radars that interfere with each other, and evaluate the mutual interference for different types of automotive radars based on Poisson point process (PPP). We also propose a centralized framework and the corresponding algorithm, which relies on V2X communication systems to allocate the spectrum resources for automotive radars to minimize the interference. The minimum spectrum resources required for zero-interference are analyzed for different cases. Simulation results validate the analysis and show that the proposed framework can achieve near-zero-interference with the minimum spectrum resources.
  • REVIEW PAPER
    LIU Dake, CAI Zhaoyun*, WANG Wei
    China Communications. 2016, 13(1): 1-16.
    Processors have been playing important roles in both communication infrastructure systems and terminals. In this paper, both application specific and general purpose processors for communications are discussed including the roles, the history, the current situations, and the trends. One trend is that ASIPs (Application Specific Instruction-set Processors) are taking over ASICs (Application Specific Integrated Circuits) because of the increasing needs both on performance and compatibility of multi-modes. The trend opened opportunities for researchers crossing the boundary between communications and computer architecture. Another trend is the serverlization, i.e., more infrastructure equipments are replaced by servers. The trend opened opportunities for researchers working towards high performance computing for communication, such as research on communication algorithm kernels and real time programming methods on servers.
  • FEATURE TOPIC: CLOUD MOBILE MEDIA
    Zufan Zhang, Lisha Luo, Lisha Wang
    China Communications. 2016, 13(8): 41-52.
    In cellular network, users with same demand and in proximity to each other form the mobile cloud, in which the short-range D2D technology is employed by users to improve the data dissemination efficiency. In view of the fact that the D2D links with the poor channel conditions are likely to be the bottleneck of resource utilization improvement, aiming at the differentiation of link quality, this paper proposes a intra-cloud D2D multicast retransmission algorithm based on SINR constraint to meet the minimum requirement of D2D retransmission for QoS. In the proposed algorithm, the model of system link cost is built, the number of multicast retransmission times is restricted and each link quality matrix is traversed to reasonably select the multicast transmitter as well as its routing, which further reduces the link cost consumption, and in turn improves the bandwidth efficiency. Simulation results show that the proposed algorithm is more efficient to improve the bandwidth utilization when the ratio between normal user and non-normal user is small in mobile cloud.
  • COMMUNICATION NETWORKS
    Jianyuan Feng, Zhiyong Feng, Zhiqing Wei
    China Communications. 2016, 13(8): 148-158.
    Although small cell offloading technology can alleviate the congestion in macrocell, aggressively offloading data traffic from macrocell to small cell can also degrade the performance of small cell due to the heavy load. Because of collision and backoff, the degradation is significant especially in network with contention-based channel access, and finally decreases throughput of the whole network. To find an optimal fraction of traffic to be offloaded in heterogeneous network, we combine Markov chain with the Poisson point process model to analyze contention-based throughput in irregularly deployment networks. Then we derive the close-form solution of the throughput and find that it is a function of the transmit power and density of base stations. Based on this, we propose the load-aware offloading strategies via power control and base station density adjustment. The numerical results verify our analysis and show a great performance gain compared with non-load-aware offloading.
  • BRAIN-COMPUTER-INTERFACE INSPIRED COMMUNICATIONS
    Lu Jiang, Weihua Pei, Yijun Wang
    China Communications. 2022, 19(2): 1-14.
    A brain-computer interface (BCI) system based on steady-state visual evoked potentials (SSVEP) was developed by four-class phase-coded stimuli. SSVEPs elicited by flickers at 60Hz, which is higher than the critical fusion frequency (CFF), were compared with those at 15Hz and 30Hz. SSVEP components in electroencephalogram (EEG) were detected using task related component analysis (TRCA) method. Offline analysis with 17 subjects indicated that the highest information transfer rate (ITR) was 29.80±4.65bpm with 0.5s data length for 60Hz and the classification accuracy was 70.07±4.15%. The online BCI system reached an averaged classification accuracy of 87.75±3.50% at 60Hz with 4s, resulting in an ITR of 16.73±1.63bpm. In particular, the maximum ITR for a subject was 80bpm with 0.5s at 60Hz. Although the BCI performance of 60Hz was lower than that of 15Hz and 30Hz, the results of the behavioral test indicated that, with no perception of flicker, the BCI system with 60Hz was more comfortable to use than 15Hz and 30Hz. Correlation analysis revealed that SSVEP with higher signal-to-noise ratio (SNR) corresponded to better classification performance and the improvement in comfortableness was accompanied by a decrease in performance. This study demonstrates the feasibility and potential of a user-friendly SSVEP-based BCI using imperceptible flickers.
  • CHANNEL CHARACTERIZATION AND MODELING
    LIU Liu, TAO Cheng, SUN Rongchen, CHEN Houjin
    China Communications. 2016, 13(1): 17-21.
    The varying trajectory of Doppler frequency under changing speed motion conditionsare investigated in HighSpeed Railway (HSR) scenarios. Based on the geometrical physical parameters, instantaneous Doppler trajectories and expression forms of the change rate arededuced, including acceleration and deceleration cases.These modified models provide more accurate and realisticapproximations in modeling rapidly fading channels.
  • COMMUNICATIONS SYSTEM DESIGN
    ZHAO Juntao, FENG Wei, ZHAO Ming, WANG Jing
    China Communications. 2016, 13(1): 57-67.
    Spectrum sharing for efficient reuse of licensed spectrum is an important concept for cognitive radio technologies. In a spectrum-sharing system (SSS), deploying the antennas in a distributed manner can offer a new spatial dimension for the efficient reuse of licensed frequency bands. To improve the whole performance of multiple secondary users (SUs), this paper addresses the problem of coordinated multi-SU spectrum sharing in a distributed antenna-based SSS. By adopting the Hungarian method, the primal decomposition method and pricing policy, we propose a coordinated multi-user transmission scheme, so as to maximize the sum-rate of SUs. Simulation results show that the proposed method can significantly enhance the system performance, and the computational complexity is low.
  • WIRELESS COMMUNICATIONS
    Xiaorong Zhu, Mengrong Li, Wenchao Xia, Hongbo Zhu
    China Communications. 2016, 13(8): 136-147.
    In this paper, we propose a novel speed and service-sensitive handoff algorithm and analytical model for hierarchical cellular networks. First, we use the Gauss-Markov mobility model to predict the speeds of mobile stations, and divide mobile stations into three classes based on the predicted speeds: fast, medium-speed, and slow. Then, according to the mobility classification, network conditions, and service types, mobile stations will be handoff to the proper target networks prior to the deterioration of the currently operating channel. We further develop an analytical model to evaluate the performance of such a hierarchical system with different speed classes and service types. Simulations and analytical results show that the proposed handoff algorithm can significantly improve the network performance in terms of the handoff failure probability, unnecessary handoff probability, and network throughput, comparing with the traditional algorithms.
  • SECURITY SCHEMES AND SOLUTIONS
    ZHAO Bo, XIANG Shuang, AN Yang, TAO Wei
    China Communications. 2016, 13(1): 161-175.
    This paper analyzes the threat of TCG Software Stack (TSS)/TCM Service Module (TSM) deadlock in multi-user environment such as cloud and discusses its causes and mechanism. In addition, this paper puts forward a dynamic priority task scheduling strategy based on value evaluation to handle this threat. The strategy is based on the implementation features of trusted hardware and establishes a multi-level ready queue. In this strategy, an algorithm for real-time value computing is also designed, and it can adjust the production curves of the real time value by setting parameters in different environment, thus enhancing its adaptability, which is followed by scheduling and algorithm description. This paper also implements the algorithm and carries out its performance optimization. Due to the experiment result from Intel NUC, it is shown that TSS based on advanced DPTSV is able to solve the problem of deadlock with no negative influence on performance and security in multi-user environment.
  • COMMUNICATION NETWORKS
    Zeheng Yang, Yongan Guo
    China Communications. 2016, 13(8): 177-183.
    Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in network virtualization. VNE is NP-hard and former VNE algorithms are mostly heuristic in the literature. VNE exact algorithms have been developed in recent years. However, the constraints of exact VNE are only node capacity and link bandwidth. Based on these, this paper presents an exact VNE algorithm, ILP-LC, which is based on Integer Linear Programming(ILP), for embedding virtual network request with location constraints. This novel algorithm is aiming at mapping virtual network request(VNR) successfully as many as possible and consuming less substrate resources. The topology of each VNR is randomly generated by Waxman model. Simulation results show that the proposed ILP-LC algorithm outperforms the typical heuristic algorithms in terms of the VNR acceptance ratio, at least 15%.
  • COMMUNICATIONS SYSTEM DESIGN
    YU Shuangming, FENG Peng, WU Nanjian
    China Communications. 2016, 13(1): 33-46.
    The paper proposes a low power non-volatile baseband processor with wake-up identification (WUI) receiver for LR-WPAN transceiver. It consists of WUI receiver, main receiver, transmitter, non-volatile memory (NVM) and power management module. The main receiver adopts a unified simplified synchronization method and channel codec with proactive Reed-Solomon Bypass technique, which increases the robustness and energy efficiency of receiver. The WUI receiver specifies the communication node and wakes up the transceiver to reduce average power consumption of the transceiver. The embedded NVM can backup/restore the states information of processor that avoids the loss of the state information caused by power failure and reduces the unnecessary power of repetitive computation when the processor is waked up from power down mode. The baseband processor is designed and verified on a FPGA board. The simulated power consumption of processor is 5.1μW for transmitting and 28.2μW for receiving. The WUI receiver technique reduces the average power consumption of transceiver remarkably. If the transceiver operates 30 seconds in every 15 minutes, the average power consumption of the transceiver can be reduced by two orders of magnitude. The NVM avoids the loss of the state information caused by power failure and energy waste caused by repetitive computation.
  • FEATURE TOPIC: CLOUD MOBILE MEDIA
    Liwei Mu, Chulong Liang, Zhiyong Liu, Daru Pan
    China Communications. 2016, 13(8): 97-102.
    In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check (RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended sub-matrix of each extended code is obtained by choosing specified elements from two fixed matrices HE1k and HE2k, which are derived by modifying the extended matrices HE1 and HE2 of a systematic RC-LDPC block code. The proposed method which is based on graph extension simplifies the design, and prevent the defects caused by the puncturing method. It can be used to generate both regular and irregular RC-LDPC convolutional codes. All resulted codes in the family are systematic which simplify the encoder structure and have maximum encoding memories which ensure the property. Simulation results show the family collectively offer a steady improvement in performance with code compatibility over binary-input additive white Gaussian noise channel (BI-AWGNC).
  • COMMUNICATION NETWORKS
    Ningzhe Xing, Siya Xu, Sidong Zhang, Shaoyong Guo
    China Communications. 2016, 13(8): 169-176.
    In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.
  • STRATEGIES AND SCHEMES
    WANG Yajun, LIAO Tongqing, WANG Chuanan
    China Communications. 2016, 13(1): 176-184.
    In this paper, we consider a wireless ad hoc network consisting of multiple source nodes transmitting to their respective destinations, where an eavesdropper attempts to intercept their transmissions. We propose an optimal transmission scheduling scheme to defend against the eavesdropper, where a source node having the highest secrecy rate is scheduled to access the wireless medium for transmitting to its destination in an opportunistic manner. To be specific, the secrecy rate between a pair of the source and destination in the presence of an eavesdropper varies temporally due to the wireless fading effect. The proposed optimal transmission scheduling scheme opportunistically selects a source node with the highest secrecy rate to transmit its data for the sake of maximizing the security of the ad hoc network against eavesdropping attacks. For comparison purposes, we also consider the conventional round-robin scheduling as a benchmark, where multiple source nodes take turns in accessing their shared wireless medium for transmitting to their respective destinations. We derive closed-form secrecy outage probability expressions of both the round-robin scheduling and the proposed optimal scheduling schemes over Rayleigh fading environments. Numerical results show that the proposed transmission scheduling scheme outperforms the conventional round-robin method in terms of its secrecy outage probability. Additionally, upon increasing the number of source-destination pairs, the secrecy outage probability of the round-robin scheme keeps unchanged, whereas the secrecy outage performance of the proposed transmission scheduling significantly improves, showing the security benefits of exploiting transmission scheduling for protecting wireless ad hoc networks against eavesdropping.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Pan Tang, Jianhua Zhang, Haoyu Tian, Zhaowei Chang, Jun Men, Yuxiang Zhang, Lei Tian, Liang Xia, Qixing Wang, Jingsuo He
    China Communications. 2021, 18(5): 19-32.
    Terahertz (THz) communication has been envisioned as a key enabling technology for sixth-generation (6G). In this paper, we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz. Furthermore, the path loss is analyzed and modeled by using two single-frequency path loss models and a multiple-frequencies path loss model. It is found that at most frequency points, the measured path loss is larger than that in the free space. But at around 310 GHz, the propagation attenuation is relatively weaker compared to that in the free space. Also, the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1. Moreover, the cellular performance of THz communication systems is investigated by using the obtained path loss model. Simulation results indicate that the current inter-site distance (ISD) for the indoor scenario is too small for THz communications. Furthermore, the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands. Generally, this work can give an insight into the design and optimization of THz communication systems for 6G.
  • FEATURE TOPIC:COLLABORATIVE INTELLIGENCE FOR VEHICULAR INTERNET OF THINGS
    Bo Liu, Zhou Su, Qichao Xu
    China Communications. 2021, 18(7): 147-157.
    With the ever-expanding applications of vehicles and the development of wireless communication technology, the burgeoning unmanned aerial vehicle (UAV) assisted vehicular internet of things (UVIoTs) has emerged, where the ground vehicles can experience more efficient wireless services by employing UAVs as a temporary mobile base station. However, due to the diversity of UAVs, there exist UAVs such as jammers to degenerate the performance of wireless communication between the normal UAVs and vehicles. To solve above the problem, in this paper, we propose a game based secure data transmission scheme in UVIoTs. Specifically, we exploit the offensive and defensive game to model the interactions between the normal UAVs and jammers. Here, the strategy of the normal UAV is to determine whether to transmit data, while that of the jammer is whether to interfere. We then formulate two optimization problems, i.e., maximizing the both utilities of UAVs and jammers. Afterwards, we exploit the backward induction method to analyze the proposed countermeasures and finally solve the optimal solution. Lastly, the simulation results show that the proposed scheme can improve the wireless communication performance under the attacks of jammers compared with conventional schemes.
  • 6G TOWARDS 2030: FROM KEY TECHNOLOGY TO NETWORK ARCHITECTURE
    Yanfei Dong, Jincheng Dai, Kai Niu, Sen Wang, Yifei Yuan
    China Communications. 2022, 19(3): 101-115.
    In order to provide ultra low-latency and high energy-efficient communication for intelligences, the sixth generation (6G) wireless communication networks need to break out of the dilemma of the depleting gain of the separated optimization paradigm. In this context, this paper provides a comprehensive tutorial that overview how joint source-channel coding (JSCC) can be employed for improving overall system performance. For the purpose, we first introduce the communication requirements and performance metrics for 6G. Then, we provide an overview of the source-channel separation theorem and why it may not hold in practical applications. In addition, we focus on two new JSCC schemes called the double low-density parity-check (LDPC) codes and the double polar codes, respectively, giving their detailed coding and decoding processes and corresponding performance simulations. In a nutshell, this paper constitutes a tutorial on the JSCC scheme tailored to the needs of future 6G communications.
  • FEATURE TOPIC: CLOUD MOBILE MEDIA
    Peng Zhao, Xinyu Yang*
    China Communications. 2016, 13(8): 24-40.
    Emerging wireless community cloud enables usergenerated video content to be shared and consumed in a social context. However, the nature of shared wireless medium and timevarying channels seriously limits the quality of service (QoS), partially owing to the lack of mechanisms for effectively utilizing multi-rate channel resources. In this paper, the joint optimization of admission control and rate adaptation is proposed, resulting in a bandwidth-aware rate-adaptive admission control (BRAC) scheme to provide bandwidth guarantee for sharing social multimedia contents. The analytical approach leads to the following major contributions: (1) a bandwidth-aware rate selection (BRS) algorithm to optimally meet the bandwidth requirement of the data session and channel conditions at the physical layer; (2) a routing-coupled rate adaption and admission control algorithm to admit data sessions with bandwidth guarantee. Moreover, extensive numerical simulations suggest that BRAC is efficient and effective in meeting the bandwidth requirements for sharing social multimedia contents. These insights will shed light on communication system implementation for multimedia content sharing over multirate wireless community cloud.
  • Guest Editorial
    Yuanzhi He, Biao Sheng, Hao Yin, Di Yan, Yingchao Zhang
    China Communications. 2022, 19(1): 77-91.
    Resource allocation is an important problem influencing the service quality of multi-beam satellite communications. In multi-beam satellite communications, the available frequency bandwidth is limited, users requirements vary rapidly, high service quality and joint allocation of multi-dimensional resources such as time and frequency are required. It is a difficult problem needs to be researched urgently for multi-beam satellite communications, how to obtain a higher comprehensive utilization rate of multi-dimensional resources, maximize the number of users and system throughput, and meet the demand of rapid allocation adapting dynamic changed the number of users under the condition of limited resources, with using an efficient and fast resource allocation algorithm. In order to solve the multi-dimensional resource allocation problem of multi-beam satellite communications, this paper establishes a multi-objective optimization model based on the maximum the number of users and system throughput joint optimization goal, and proposes a multi-objective deep reinforcement learning based time-frequency two-dimensional resource allocation (MODRL-TF) algorithm to adapt dynamic changed the number of users and the timeliness requirements. Simulation results show that the proposed algorithm could provide higher comprehensive utilization rate of multi-dimensional resources, and could achieve multi-objective joint optimization, and could obtain better timeliness than traditional heuristic algorithms, such as genetic algorithm (GA) and ant colony optimization algorithm (ACO).
  • COVER PAPER
    Huanxi Cui, Jun Zhang, Yuhui Geng, Zhenyu Xiao, Tao Sun, Ning Zhang, Jiajia Liu, Qihui Wu, Xianbin Cao
    China Communications. 2022, 19(2): 90-108.
    As the fifth-generation (5G) mobile communication network may not meet the requirements of emerging technologies and applications, including ubiquitous coverage, industrial internet of things (IIoT), ubiquitous artificial intelligence (AI), digital twins (DT), etc., this paper aims to explore a novel space-air-ground integrated network (SAGIN) architecture to support these new requirements for the sixth-generation (6G) mobile communication network in a flexible, low-latency and efficient manner. Specifically, we first review the evolution of the mobile communication network, followed by the application and technology requirements of 6G. Then the current 5G non-terrestrial network (NTN) architecture in supporting the new requirements is deeply analyzed. After that, we proposes a new flexible, low-latency and flat SAGIN architecture, and presents corresponding use cases. Finally, the future research directions are discussed.
  • 6G TOWARDS 2030: FROM KEY TECHNOLOGY TO NETWORK ARCHITECTURE
    Zheng Hu, Ping Zhang, Chunhong Zhang, Benhui Zhuang, Jianhua Zhang, Shangjing Lin, Tao Sun
    China Communications. 2022, 19(3): 16-35.
    Sixth Generation (6G) wireless communication network has been expected to provide global coverage, enhanced spectral efficiency, and AI(Artificial Intelligence)-native intelligence, etc. To meet these requirements, the computational concept of Decision-Making of cognition intelligence, its implementation framework adapting to foreseen innovations on networks and services, and its empirical evaluations are key techniques to guarantee the generation-agnostic intelligence evolution of wireless communication networks. In this paper, we propose an Intelligent Decision Making (IDM) framework, acting as the role of network brain, based on Reinforcement Learning modelling philosophy to empower autonomous intelligence evolution capability to 6G network. Besides, usage scenarios and simulation demonstrate the generality and efficiency of IDM. We hope that some of the ideas of IDM will assist the research of 6G network in a new or different light.
  • SERVICES AND APPLICATIONS
    Fengye Hu, Lu Wang, Shanshan Wang, Xiaolan Liu, Gengxin He
    China Communications. 2016, 13(8): 198-208.
    Human body posture recognition has attracted considerable attention in recent years in wireless body area networks (WBAN). In order to precisely recognize human body posture, many recognition algorithms have been proposed. However, the recognition rate is relatively low. In this paper, we apply back propagation (BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude (SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4 postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Shanyun Liu, Xianbin Yu, Rongbin Guo, Yajie Tang, Zhifeng Zhao
    China Communications. 2021, 18(5): 33-49.
    For the sake of meeting the demand of data rates at terabit (Tbit) per second scale in future networks, the terahertz (THz) band is widely accepted as one of the potential key enabling technologies for next generation wireless communication systemsWith the progressive development of THz devices, regrading THz communications at system level is increasing crucial and captured the interest of plenty of researchersWithin this scope, THz channel modeling serves as an indispensable and fundamental elementBy surveying the latest literature findings, this paper reviews the problem of channel modeling in the THz band, with an emphasis on molecular absorption loss, misalignment fading and multipath fading, which are major influence factors in the THz channel modelingThen, we focus on simulators and experiments in the THz band, after which we give a brief introduction on applications of THz channel models with respects to capacity, security, and sensing as examplesFinally, we discuss some key issues in the future THz channel modeling.
  • Guest Editorial
    Fei Huang, Guangxia Li, Shiwei Tian, Jin Chen, Guangteng Fan, Jinghui Chang
    China Communications. 2022, 19(1): 202-217.
    Unmanned aerial vehicles (UAVs) are increasingly considered in safe autonomous navigation systems to explore unknown environments where UAVs are equipped with multiple sensors to perceive the surroundings. However, how to achieve UAV-enabled data dissemination and also ensure safe navigation synchronously is a new challenge. In this paper, our goal is minimizing the whole weighted sum of the UAV's task completion time while satisfying the data transmission task requirement and the UAV's feasible flight region constraints. However, it is unable to be solved via standard optimization methods mainly on account of lacking a tractable and accurate system model in practice. To overcome this tough issue, we propose a new solution approach by utilizing the most advanced dueling double deep Q network (dueling DDQN) with multi-step learning. Specifically, to improve the algorithm, the extra labels are added to the primitive states. Simulation results indicate the validity and performance superiority of the proposed algorithm under different data thresholds compared with two other benchmarks.
  • FEATURE TOPIC:COLLABORATIVE INTELLIGENCE FOR VEHICULAR INTERNET OF THINGS
    Sankar Sennan, Somula Ramasubbareddy, Sathiyabhama Balasubramaniyam, Anand Nayyar, Chaker Abdelaziz Kerrache, Muhammad Bilal
    China Communications. 2021, 18(7): 69-85.
    Internet of Vehicles (IoV) is an evolution of the Internet of Things (IoT) to improve the capabilities of vehicular ad -hoc networks (VANETs) in intelligence transport systems. The network topology in IoV paradigm is highly dynamic. Clustering is one of the promising solutions to maintain the route stability in the dynamic network. However, existing algorithms consume a considerable amount of time in the cluster head (CH) selection process. Thus, this study proposes a mobility aware dynamic clustering -based routing (MADCR) protocol in IoV to maximize the lifespan of networks and reduce the end -to -end delay of vehicles. The MADCR protocol consists of cluster formation and CH selection processes. A cluster is formed on the basis of Euclidean distance. The CH is then chosen using the mayfly optimization algorithm (MOA). The CH subsequently receives vehicle data and forwards such data to the Road Side Unit (RSU). The performance of the MADCR protocol is compared with that ofAnt Colony Optimization (ACO), Comprehensive Learning Particle Swarm Optimization (CLPSO), and Clustering Algorithm for Internet of Vehicles based on Dragonfly Optimizer (CAVDO). The proposed MADCR protocol decreases the end-to-end delay by 5-80 ms and increases the packet delivery ratio by 5%-15%.
  • Guest Editorial
    Xiaohan Qi, Zhihua Yang
    China Communications. 2022, 19(1): 136-152.
    This work focuses on an unmanned aerial vehicle (UAV)-enabled mobile edge computing (MEC) system based on device-to-device (D2D) communication. In this system, the UAV exhibits caching, computing and relaying capabilities to periodically provide specific service to cellular users and D2D receiver nodes in the appointed time slot. Besides, the D2D transmitter can provide additional caching services to D2D receiver to reduce the pressure of the UAV. Note that communication between multi-type nodes is mutually restricted and different links share spectrum resources. To achieve an improved balance between different types of node, we aim to maximize the overall energy efficiency while satisfying the quality-of-service requirements of the cellular nodes. To address this problem, we propose an alternating iteration algorithm to jointly optimize the scheduling strategies of the user, transmitting power of the UAV and D2D-TX nodes, and UAV trajectory. The successive convex approximation, penalty function, and Dinkelbach method are employed to transform the original problem into a group of solvable subproblems and the convergence of the method is proved. Simulation results show that the proposed scheme performs better than other benchmark algorithms, particularly in terms of balancing the tradeoff between minimizing UAV energy consumption and maximizing throughput.
  • SECURITY SCHEMES AND SOLUTIONS
    Yongquan Yan, Ping Guo
    China Communications. 2016, 13(6): 225-235.
    In the past two decades, software aging has been studied by both academic and industry communities. Many scholars focused on analytical methods or time series to model software aging process. While machine learning has been shown as a very promising technique in application to forecast software state: normal or aging. In this paper, we proposed a method which can give practice guide to forecast software aging using machine learning algorithm. Firstly, we collected data from a running commercial web server and preprocessed these data. Secondly, feature selection algorithm was applied to find a subset of model parameters set. Thirdly, time series model was used to predict values of selected parameters in advance. Fourthly, some machine learning algorithms were used to model software aging process and to predict software aging. Fifthly, we used sensitivity analysis to analyze how heavily outcomes changed following input variables change. In the last, we applied our method to an IIS web server. Through analysis of the experiment results, we find that our proposed method can predict software aging in the early stage of system development life cycle.
  • NETWORKS & SECURITY
    Gang Lu, Ronghua Guo, Ying Zhou, Jing Du
    China Communications. 2018, 15(6): 125-138.
    Machine Learning (ML) techniques have been widely applied in recent traffic classification. However, the problems of both discriminator bias and class imbalance decrease the accuracies of ML based traffic classifier. In this paper, we propose an accurate and extensible traffic classifier. Specifically, to address the discriminator bias issue, our classifier is built by making an optimal cascade of binary sub-classifiers, where each binary sub-classifier is trained independently with the discriminators used for identifying application specific traffic. Moreover, to balance a training dataset, we apply SMOTE algorithm in generating artificial training samples for minority classes. We evaluate our classifier on two datasets collected from different network border routers. Compared with the previous multi-class traffic classifiers built in one-time training process, our classifier achieves much higher F-Measure and AUC for each application.
  • SECURITY SCHEMES AND SOLUTIONS
    TIAN Donghai, JIA Xiaoqi, CHEN Junhua, HU Changzhen
    China Communications. 2016, 13(1): 113-123.
    Recently, virtualization technologies have been widely used in industry. In order to monitor the security of target systems in virtualization environments, conventional methods usually put the security monitoring mechanism into the normal functionality of the target systems. However, these methods are either prone to be tempered by attackers or introduce considerable performance overhead for target systems. To address these problems, in this paper, we present a concurrent security monitoring method which decouples traditional serial mechanisms, including security event collector and analyzer, into two concurrent components. On one hand, we utilize the SIM framework to deploy the event collector into the target virtual machine. On the other hand, we combine the virtualization technology and multi-core technology to put the event analyzer into a trusted execution environment. To address the synchronization problem between these two concurrent components, we make use of Lamport’s ring buffer algorithm. Based on the Xen hypervisor, we have implemented a prototype system named COMO. The experimental results show that COMO can monitor the security of the target virtual machine concurrently within a little performance overhead.
  • OPTICAL COMMUNICATIONS
    Jiajing Tu, Xueqin Xie, Keping Long
    China Communications. 2016, 13(8): 192-197.
    Decreasing mode coupling coefficient (κ) is an effective approach to suppress the inter-core crosstalk. Therefore, we deploy a low index rod and rectangle trench in the middle of two neighboring cores to reduce κ so that the overlap of electric field distribution can be suppressed. We also propose approximate analytical solution (AAS) for κ of two crosstalk suppression models, which are two cores with one low index rod deployed in the middle and two cores with one low index rectangle trench deployed in the middle. We then do some modification for the results obtained by AAS and the modified results are proved to agree well with that obtained by finite element method (FEM). Therefore, we can use the modified AAS to get inter-core crosstalk for abovementioned two models quickly.
  • NETWORKS & SECURITY
    Mengke Yang, Movahedipour Mahmood, Xiaoguang Zhou, Salam Shafaq, Latif Zahid
    China Communications. 2017, 14(10): 180-191.
    Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main applications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and handling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle terminals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of intelligent logistics cloud platform containing software layer (SaaS), platform layer (PaaS) and infrastructure (IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, heterogeneous terminal data access, encapsulation and data mining. Therefore, intelligent logistics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-win logistics ecological system and the benign development of the ICT industry in the trend of intellectualization in China.
  • FEATURE TOPIC: TERAHERTZ WIRELESS COMMUNICATIONS
    Hang Yang, Shilie Zheng, Wei He, Xianbin Yu, Xianmin Zhang
    China Communications. 2021, 18(5): 131-152.
    To accommodate the ever-increasing wireless capacity, the terahertz (THz) orbital angular momentum (OAM) beam that combines THz radiation and OAM technologies has attracted much attention recently, with contributing efforts to explore new dimensions in the THz region. In this paper, we provide an overview of the generation and detection techniques of THz-OAM beams, as well as their applications in communications. The principle and research status of typical generation and detection methods are surveyed, and the advantages and disadvantages of each method are summarized from a viewpoint of wireless communication. It is shown that developing novel THz components in generating, detecting and (de)multiplexing THz-OAM beams has become the key engine to drive this direction forward. Anyway, beneficial from the combination of infinite orthogonal modes and large bandwidth, THz-OAM beams will have great potential in delivering very large capacity in next generation wireless communications.