User Association and Wireless Backhaul Bandwidth Allocation for 5G Heterogeneous Networks in the Millimeter-Wave Band

Zhenxiang Su¹, Bo Ai¹,²,*, Yichuan Lin¹, Danping He¹, Ke Guan¹, Ning Wang³,⁴, Guoyu Ma¹, Li Niu⁵

¹ State Key Lab of Rail Traffic Control and Safety Beijing Jiaotong University, Beijing 100044, China
² Beijing Engineering Research Center of High-speed Railway Broadband Mobile Communications, Beijing, China
³ School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
⁴ National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
⁵ ZTE Corporation, Beijing, China
* The corresponding author, email: boai@bjtu.edu.cn

Abstract: The user association and wireless backhaul bandwidth allocation for a two-tier heterogeneous network (HetNet) in the millimeter wave (mmWave) band is proposed in this article. The two-tier HetNet is built up with a macro base station (MBS) and several small cell SBSs, where the MBS is assumed to be equipped with large-scale antenna arrays but the SBSs only have single-antenna capability and they rely on the wireless link to the MBS for backhaul. The sum of logarithmic user rate, which is established according to the result of multi-user Multiple Input Multiple Output (MIMO) downlink employing Zero-Force Beamforming (ZFBF), is chosen as the network utility for the objective function. And a distributed optimization algorithm based on primal and dual decomposition is used to jointly optimize the user association variable x_{ij} and the wireless backhaul bandwidth factor β. Simulation results reveal that the distributed optimization algorithm jointly optimizing two variables outperforms the conventional SINR-based user association strategies.

Keywords: millimeter wave; massive MIMO; ZFBF; user association; bandwidth allocation

I. INTRODUCTION

With exponentially increasing demand for data traffic in the past decade and the foreseen future, the radio spectrum suitable for long range high rate wireless communications is becoming more and more scarce. Thus, an increasing number of novel wireless communication technologies are proposed. A cluster-nuclei based model for wireless channel is proposed in the literature [1], considering the big data research progress. In literature [2], 6–100 GHz research progress and challenges from a channel perspective for the fifth generation (5G) and future wireless communication are analyzed. Millimeter wave (mmWave) communications technology described in the literature [3][4][5], due to the vastly available bandwidth, has been attracting increasing attention from both academia and industry in the past few years [6][7]. By combining mmWave communications with heterogeneous network (HetNet) architecture, flexible wireless access of massive mobile terminals (MTs) can be supported, especially when wireless backhaul and large-scale antenna arrays technologies come into play [8][9][10]. However, with the
This paper proposes a scheme for solving the user association and wireless backhaul bandwidth allocation problem in a two-tier HetNet at the mmWave band.

conventional signal-to-interference-plus-noise ratio (SINR) based user association schemes, the macro base station (MBS) tends to attract much more users than the small cell base station (SBS) due to the different transmit power and antenna configuration in the two-tier HetNet, which results in the communication congestion [11]. In this case, an efficient source allocation and user association method aiming at load balancing should be concerned.

There are a plenty of literature studying cell association and resource allocation. The related works on user association and resource allocation can be divided into two groups:

- Schemes for realizing the fairness of the entire network and promoting user experiences: a biasing approach attempting to offload traffic of BS is proposed in the literature [12]. The user association is done using cell range extension (CRE) and the resource allocation is divided orthogonally in the spectrum to minimize the outage probability [13]. Load balancing across networks with massive MIMO and the utility function emphasizing fairness are considered in the literature [14].

- Schemes for maximizing the system throughput: a user association method is proposed aiming at obtaining maximal throughput under the wireless backhaul constraints [10]. A heuristic dynamic cell association method is investigated to achieve the maximum sum rate of all users [15]. A network utility function of the long-term rate for each user is optimized by distributed optimization algorithms [11][16]. This kind of strategy maximizes the system throughput but fails to address the fairness issue.

All these papers do not jointly consider user association and wireless backhaul resource allocation in a multi-tier HetNet with large-scale antenna arrays at the mmWave band. It is well known, user association and resource allocation are closely related and the backhaul constraints play an important part in the overall system capacity in wireless communication. Therefore, this paper investigates a distributed optimization algorithm to solve the optimization problem of biased user association and constrained wireless backhaul bandwidth allocation. The contributions of this paper are listed as follow:

- This paper jointly optimizes the user association sub-problem and wireless backhaul bandwidth resource sub-problem in a two-tier HetNet with large-scale antenna arrays at the mmWave band. Additionally, a biasing factor on SINR is introduced to keep the fairness of the system.

- A distributed optimization algorithm based on primal and dual decompositions is used to solve the optimization problem. The original problem is decomposed into a wireless backhaul bandwidth allocation sub-problem and a user association sub-problem. And the user association sub-problem is solved in its Lagrange dual problem.

- The simulation results verify that the system throughput was improved by increasing the number of users and the large-scale antenna array size. And by comparing with the conventional user association method, the distributed optimization algorithm has an obvious advantage in improving the system throughput.

The rest of the paper is arranged as follows. A system model is introduced in Section II. In Section III, the objective function is established and solved by the distributed optimization algorithm. Numerical simulations and analysis are discussed in Section IV. Finally, a conclusion is made in Section V.

II. SYSTEM MODEL

2.1 The deployment of BSs and users in the HetNet with massive MIMO

As shown in figure 1, in the two-tier HetNet, the macro BS (MBS) equipped with N_c antennas is located in the center of the area, while the small BSs (SBSs) and mobile terminals (MTs) are both only equipped with a single antenna in the coverage range of MBS. The
set of MTs is defined as \(U \) and the set of SBSs is denoted by \(B \). \(B_0 = B \cup \{0\} \) is the set of all BSs, where 0 is the indicator of MBS. The configuration parameters are given in table 1.

As for the beamforming gain, it is different between the access link of MBS and the backhaul link. Since the number of SBS is much smaller than the antenna array size of MBS, each backhaul link between the SBS and MBS is served by one beamforming group. And assume that the channel state information (CSI) is completely known by BS, the beamforming gain of the backhaul link is derived as \(\left(\frac{N_m - N_x}{N_x} \right) \) according to ZFBB [17][18].

But for the access link of MBS, the number of users \(N_u \) is much more than \(N_m \), so we use the user grouping method to calculate the beamforming gain of the access link. All the users associated with MBS can be divided into \(\sum_{i=1}^{\sum_{x=0}^{g}} \sum_{x=0}^{g} x_{0,i} \) groups, where \(\sum_{i=1}^{\sum_{x=0}^{g}} x_{0,i} \) is the number of users served by MBS, and \(N_g \) is the number of beamforming group, which means that different group user use different access bandwidth and users in the same group are served by the same bandwidth but different beam. Thus, the beamforming gain of the access link of MBS is \(\left(\frac{N_m - N_x}{N_g} \right) \) [17][18].

2.2 Downlink SINR bias and interference arrangement

In the conventional scheme, users associated with the BS with the maximal SINR in downlink, which makes the MBS over-loaded. Therefore, an SINR bias approach is investigated.

Definition 1. Assuming the factor \(A_j \) for the \(j^{th} \) BS, the biased SINR received by the \(i^{th} \) user from the \(j^{th} \) BS is defined as follow:

\[
\text{SINR}_{i,j} = A_j \cdot \text{SINR}_{i,j}.
\]

(1)

The SINR bias approach offloads users from the heavy-load MBS to the light-load SBSs, which guarantees the fairness of the HetNet and especially improves the rate of cell-edge users.

In addition, the transmission of the MBS has a serious interference to the close by SBSs, if they have the same time slot configuration.

<table>
<thead>
<tr>
<th>Table 1. Configuration in the two-tier HetNet system model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Antenna array size at MBS ((N_m))</td>
</tr>
<tr>
<td>Antenna element type</td>
</tr>
<tr>
<td>Antenna gain of MBS</td>
</tr>
<tr>
<td>Antenna gain of SBS</td>
</tr>
<tr>
<td>MBS Tx power</td>
</tr>
<tr>
<td>SBS Tx power</td>
</tr>
<tr>
<td>The height of MBS</td>
</tr>
<tr>
<td>The height of SBS</td>
</tr>
<tr>
<td>The average height of MT</td>
</tr>
<tr>
<td>The number of SBS ((N_s))</td>
</tr>
<tr>
<td>The number of MT ((N_u))</td>
</tr>
</tbody>
</table>

Fig. 1. A two-tier HetNet with multiple small cell BSs and a single macro BS equipped with large-scale antenna arrays.

Fig. 2. Interference elimination mechanism.
during an association period. Hence, a flexible Time Division Duplex (TDD) called reverse TDD (RTDD) is investigated [19]. In RTDD, the MBS is in the downlink (DL) mode while all the SBSs are in the uplink (UL) mode and vice versa. Based on the RTDD, the SBS simultaneously receives signals from its users and the MBS in the UL mode, which causes the interference. Therefore, the soft frequency reuse (SFR) is introduced to solve the problem. The frequency bandwidth is divided into two parts expressed by β and $(1-\beta)$, where β is for the backhaul link and $(1-\beta)$ is for the access link if we consider the whole wireless bandwidth resource as a unit. The RTDD and SFR work well on the interference avoidance in the two-tiers HetNet as shown in figure 2.

2.3 The simulation scenarios

There are an open rural scenario and a Manhattan urban scenario used to verify the correctness of the channel model and the closed-form expression of sum logarithmic user rate.

The open rural scenario is a square area with a range of $500 \times 500 \text{ m}^2$, where an MBS is deployed on the center shown as the red point and 5 SBSs are randomly deployed shown as the blue points in figure 3. In addition, 800 users are randomly deployed on the square area.

The Manhattan urban scenario is an area with a range of $500 \times 500 \text{ m}^2$ where BSs are linearly arranged along the street in the middle of two rows of tall buildings in figure 4. And there is an MBS shown as the red point and 5 SBSs shown as the blue points. Additionally, 400 users are randomly deployed on the street forming the line-of-sight (LOS) transmission and another 400 users are randomly deployed on the north open spaces of buildings forming the non-line-of-sight (NLOS) transmission.

2.4 The wireless channel model

The 3rd Generation Partnership Project (3GPP) has proposed the wireless channel models for LOS scenario and NLOS scenario in 3GPP TR 38.901 standard [20]. But the wireless channel models in 3GPP are deterministic empirical path loss models, which cannot totally express the CSI in a specific environment especially in NLOS scenario, as for
where \(x_{ji} \in \{0, 1\} \) describes the association between the \(i^{th} \) user and the \(j^{th} \) BS. \(x_{ji} = 1 \) indicates connection and \(x_{ji} = 0 \) indicates no connection.

Definition 4. We define the SINR from the MBS to the \(i^{th} \) user as
\[
\text{SINR}_0, i = A_0 P_0 H_i/N_0,
\]
where \(A_0 = 1 \) denotes no bias on macro tier and \(P_0 = 10 \) is the transmit power of the MBS. In addition, \(N_0 \) is the noise power and \(H_i \) is the channel gain between the MBS and the \(i^{th} \) user. Similarly, \(\text{SINR}_j = A_0 P_0 G_j/N_0 \) is the SINR.

III. A DISTRIBUTED OPTIMIZATION ALGORITHM FOR USER ASSOCIATION AND WIRELESS BACKHAUL BANDWIDTH ALLOCATION

3.1 Optimal objective function

We next give the following definitions before formulating the optimization function for the long-term sum of logarithmic user rate.

Definition 2. The long-term rate of the \(i^{th} \) user associated with the \(j^{th} \) BS is given by
\[
R_{j,i} = \sum_{j \in B_i} y_{j,i} \times \log_2 (1 + \text{SINR}_{j,i}),
\]
where \(y_{j,i} \) denotes the fraction of resource received by the \(i^{th} \) user from the \(j^{th} \) BS and \(\sum_{j} y_{j,i} = 1, \forall j \in B_i \).

Definition 3. If the \(i^{th} \) user is associated with the \(j^{th} \) BS, the relationship is denoted by a binary indicator \(x_{ji} \), as below
\[
\sum_{j \in B_i} x_{ji} = 1, \forall i \in \mathcal{U},
\]
from the MBS to the \(j^{th}\) SBS. The received SINR from the \(j^{th}\) SBS to the \(i^{th}\) user is denoted by \(\text{SINR}_{ji} = \frac{A_j P_j T_{ji}}{N_0 + \sum_{l \neq j} P_l T_{li}}\), where \(A_j = 6\) is the SINR biasing factor for the \(j^{th}\) SBS and \(P_j = 2\) is the transmit power of the \(j^{th}\) SBS.

Definition 5. For convenience, we make some definitions of base-line rate as:

\[
r_{nj} = N_g \log_2 (1 + \frac{N_m - N_e}{N_g} \cdot \text{SINR}_n), \forall i \in \mathcal{U},
\]

\[
r_{ji} = \log_2 (1 + \text{SINR}_{ji}), \forall (j, i) \in \mathcal{B} \times \mathcal{U},
\]

\[
c_j = \log_2 (1 + \frac{N_m - N_e}{N_{sc}} \cdot \text{SINR}_j), \forall j \in \mathcal{B},
\]

where formula (4) is the access link base-line rate of MBS, formula (5) is the access link base-line rate of SBS and formula (6) is the backhaul link base-line rate. Additionally, the \((N_m - N_e) / N_g\) is the beamforming gain of the access link and the \((N_m - N_e) / N_{sc}\) is beamforming gain of the backhaul link. And the \(N_g = \text{ceil}(\frac{N_m}{10})\) is the number of beamforming groups.

Therefore, the long-term sum of logarithmic user rate of the \(j^{th}\) BS and the throughput of the \(j^{th}\) wireless backhaul link are given by

\[
R_j = \sum_{i \in \mathcal{U}} x_{ji} \log \left(\frac{(1-\beta) r_{ji}}{\sum_{i \in \mathcal{U}} x_{ji}} \right),
\]

\[
C_j = \beta c_j,
\]

where \((1-\beta) / \sum_{i \in \mathcal{U}} x_{ji}\) is the bandwidth resource divided to each user associated with the \(j^{th}\) BS. Owing to the backhaul restriction, we make \(R_j \leq C_j\) to guarantee the capacity of backhaul link greater than that of the access link.

By relaxing the binary variable \(x_{ji}\) to \([0, 1]\), the sum of logarithmic user rate is rewritten as

\[
\text{maximize } R(\beta, X) = \sum_{j \in \mathcal{B}} \sum_{i \in \mathcal{U}} x_{ji} \log \left(\frac{(1-\beta) r_{ji}}{\sum_{i \in \mathcal{U}} x_{ji}} \right),
\]

Subject to

\[
\sum_{j \in \mathcal{B}} x_{ji} = 1, \forall i \in \mathcal{U},
\]

\[
x_{ji} \in \{0, 1\}, \forall (j, i) \in \mathcal{B} \times \mathcal{U},
\]

\[
R_j \leq C_j, \forall j \in \mathcal{B},
\]

\[
0 \leq \beta \leq 1.
\]

It is a function over \(\beta\) and \(X\). The optimization problem can be worked out by finding the optimal \(X^*\) and \(\beta^*\).

3.2 Primal decomposition and dual decomposition

The multi-objective optimization is solved by the hierarchical decomposition which contains the primal decomposition and the dual decomposition. The former decomposition is used to decompose the original problem with a direct resource allocation while the latter decomposition decomposes the Lagrange dual problem with a resource allocation via pricing [21]. Firstly, the original problem formula (9) is decomposed into a backhaul resource allocation sub-problem (RAP) and a user association sub-problem (UAP) by the primal decomposition. And the bandwidth resource allocation is executed at the MBS. Secondly, the dual decomposition method decomposes the UAP into the problem about \(x_{ji}\) and the problem about \(M_j\) via the price of \(\sum_{j \in \mathcal{B}} x_{ji} = 1\) and \(M_j = \sum_{i \in \mathcal{U}} x_{ji}\), which can be solved separately on local BSs side and users side.

The UAP and RAP are written as:

UAP:

\[
\text{maximize } \sum_{j \in \mathcal{B}} R_j(X) = \sum_{j \in \mathcal{B}} \sum_{i \in \mathcal{U}} x_{ji} \log \sum_{i \in \mathcal{U}} x_{ji},
\]

Subject to

\[
x_{ji} \in \{0, 1\}, \forall (j, i) \in \mathcal{B} \times \mathcal{U},
\]

\[
\sum_{j \in \mathcal{B}} x_{ji} = 1, \forall i \in \mathcal{U},
\]

\[
R_j(X; \beta) \leq C_j(X; \beta), \forall j \in \mathcal{B}.
\]
RAP: maximize $N_s \log(1 - \beta) + \sum_{j \in B_h} R_j(X^*)$,

\begin{align}
\text{subject to} \quad 0 \leq \beta \leq 1, \\
R_j(X^*; \beta) \leq C_j(X^*; \beta), \forall j \in B. \tag{20}
\end{align}

The UAP is a concave problem subjected to the constraints of the user association and the wireless backhaul allocation [22]. The RAP is a monotonically decreasing function over a variable β since the $X^* = \{x_{ji}; (j,i) \in B_h \times U\}$ is obtained from the UAP. Therefore, we concern more about how to solve the UAP. By introducing an auxiliary variable $M_j = \sum x_{ji}, \forall j \in B_h$, the UAP is solved by the dual decomposition [21] [22]. Two Lagrange multipliers are denoted as $\mu = [\mu_b, \mu_r, \ldots, \mu_{n_c}]^T$ and $\nu = [0, v_1, \ldots, v_{n_c}]^T$ to reformulate the Lagrangian function.

\begin{align}
L(X, \mu, v) &= \sum_{j \in B_h} \sum_{i \in U} x_{ji} \log(r_{ji}) \\
&\quad - \sum_{j \in B_h} M_j \log(M_j) + \sum_{j \in B_h} \mu_j (M_j - \sum_{i \in U} x_{ji}) \\
&\quad + \sum_{j \in B_h} v_j [\beta c_j M_j - (1 - \beta) \sum_{i \in U} x_{ji} r_{ji}] \\
&= \sum_{i \in U} \sum_{j \in B_h} x_{ji} \left[\log(r_{ji}) - \mu_j - v_j (1 - \beta) r_{ji} \right] \\
&\quad + \sum_{j \in B_h} M_j \left[\mu_j - \log(M_j) + v_j \beta c_j \right]. \tag{21}
\end{align}

The Lagrange dual problem is formulated as:

\begin{equation}
g(\mu, v) = \sup_{x_{ji}} L(X, \mu, v). \tag{22}
\end{equation}

And then the Lagrange dual decomposition is used to decompose the Lagrange dual function into two sub-problems.

\begin{equation}
g(\mu, v) = \sum_{i \in U} g_i(\mu, v) + g_M(\mu, v). \tag{23}
\end{equation}

The dual problem is a convex problem and the optimal duality gap is zero when the strong duality holds in Karush-Kuhn-Tucker or Slater’s condition [22]. That means the solution of the UAP can be obtained in its Lagrange dual problem.

The binary variable x_{ji} is updated with a throughput maximizing mechanism.

\begin{equation}
x_{ji+1}^{(t)} = \begin{cases}
1, & f = f_j^{(t)}, \forall i \in U, \\
0, & f \neq f_j^{(t)}, \forall i \in U,
\end{cases} \tag{25}
\end{equation}

where

\begin{equation}
f_j^{(t)} = \arg\max_{j \in B_h} [\log(r_{ji}) - \mu_j^{(t)} - v_j^{(t)} (1 - \beta) r_{ji}], \forall i \in U. \tag{26}
\end{equation}

which is taken into the UAP to find out X^* until both sub-problems converge. The convergence criterion is that the value of β and the Lagrange multipliers do not change anymore as shown in table 3 which means that the X^* is in stable. After obtaining the optimal solutions X^* and β^*, the sum of logarithmic user rate can be calculated according to the formula (9).

\subsection*{3.3 Simulation process}

Based on the formula in Section 3.1 and Section 3.2, the simulation process is arranged as in table 3, where a and b are both threshold value to control the accuracy of inner and outer convergence respectively.

\section*{IV. SIMULATION RESULTS AND DISCUSSION}

In this section, the comparisons of simulation results in open rural scenario and Manhattan urban scenario are analyzed. And the distributed optimization algorithm for the user association and the wireless backhaul bandwidth allocation is compared with the traditional SINR-based method and the CRE approach.
MBS serve the users associated with MBS and the SBSs in the backhaul links.

By comparing figure 6 and figure 7, we can find that almost 6% users from the macro cell are transferred into the small cell by adding the SINR biasing factor $A = 6$, when 300 users are randomly deployed in a circle range with a radius of 600 m. It is obvious that the biasing factor on SINR works well in load balancing. In the following simulations, the SINR bias is added to the distributed optimization algorithm.

As shown in figure 8, the dotted lines are the simulation results of Manhattan urban scenario while the solid lines are the results of open rural scenario. The ‘M’ and ‘R’ in the legend respectively indicates Manhattan urban scenario and rural scenario.

We can see three key points in this figure. Firstly, the sum of logarithmic user rate is improved as the number of antennas is increased in the two scenarios with the three different methods. This is because that the beamforming at the MBS is not only used for the wireless backhaul link communication but also applied to the access link communication of MBS. Both the rate of the access link and the backhaul link are increased with the beamforming gain. Secondly, the sum of logarithmic user rate of Manhattan urban scenario is lower than that of open rural scenario due to higher path loss in the urban scene as well as the different deployment of BSs and users in these two scenarios. Thirdly, by comparing the same number of antenna array size, we can always find that the distributed optimization method is the best one, but the SINR-based method has the worst performance. This is because the distributed optimization method jointly optimizes the backhaul bandwidth resource and the user association which makes it more rational in resource allocation. The SINR-based method only considers the user association without SINR bias, so it is lowest in the sum of logarithmic rate. The CRE approach also only cares about the user association with an SINR bias, which avoids MBS overloaded, thus it is better than SINR-based method.

In addition, a biasing factor on SINR is added into the distributed optimization algorithm to offload loads of MBS into the lightly loaded SBSs.

The transmit and receive antenna gain of the SBSs is 8 dBi but 0 dBi for MTs. The transmit power at the MBS is set to be 40 dBm while the transmit power at the SBSs is set as 33 dBm. N_w SBSs and N_u users are deployed in the macro cell range. The beamforming groups generated by N_w antenna elements of MBS serve the users associated with MBS and the SBSs in the backhaul links.

By comparing figure 6 and figure 7, we can find that almost 6% users from the macro cell are transferred into the small cell by adding the SINR biasing factor $A = 6$, when 300 users are randomly deployed in a circle range with a radius of 600 m. It is obvious that the biasing factor on SINR works well in load balancing. In the following simulations, the SINR bias is added to the distributed optimization algorithm.

As shown in figure 8, the dotted lines are the simulation results of Manhattan urban scenario while the solid lines are the results of open rural scenario. The ‘M’ and ‘R’ in the legend respectively indicates Manhattan urban scenario and rural scenario.

We can see three key points in this figure. Firstly, the sum of logarithmic user rate is improved as the number of antennas is increased in the two scenarios with the three different methods. This is because that the beamforming at the MBS is not only used for the wireless backhaul link communication but also applied to the access link communication of MBS. Both the rate of the access link and the backhaul link are increased with the beamforming gain. Secondly, the sum of logarithmic user rate of Manhattan urban scenario is lower than that of open rural scenario due to higher path loss in the urban scene as well as the different deployment of BSs and users in these two scenarios. Thirdly, by comparing the same number of antenna array size, we can always find that the distributed optimization method is the best one, but the SINR-based method has the worst performance. This is because the distributed optimization method jointly optimizes the backhaul bandwidth resource and the user association which makes it more rational in resource allocation. The SINR-based method only considers the user association without SINR bias, so it is lowest in the sum of logarithmic rate. The CRE approach also only cares about the user association with an SINR bias, which avoids MBS overloaded, thus it is better than SINR-based method.

Table III. Simulation process.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Generate a distribution diagram and calculate large-scale channel gain H_i, G_j and T_{ij}</td>
</tr>
<tr>
<td>Step 2</td>
<td>Calculate the base-line rate r_{ij}, r_{ij}^* and c_j, $\forall j \in B, i \in U$</td>
</tr>
<tr>
<td>Step 3</td>
<td>Execute the iterations While $\beta^{(t+1)} - \beta^{(t)} \geq a$ (the RAP does not converge at macro BS) do While $\mu^{(t+1)} - \mu^{(t)} \geq b$ or $\nu^{(t+1)} - \nu^{(t)} \geq b$ (the UAP does not converge) do Update $x_{ij}^{(t+1)}$, $\forall i \in U, j \in B$ according to formula (25) until getting the inner optimal solution $X^$ end Calculate $\beta = \max \left{ \sum_{i=1}^{N_u} x_{ij} r_{ij}^ \right}, \forall j \in B$ until getting the outer optimal solution β^* end</td>
</tr>
</tbody>
</table>

Fig. 6. User association of the two-tier HetNet without SINR bias.
We can see in figure 9, the wireless backhaul bandwidth allocation factor β is decreased by increasing the number of antennas. This is because each wireless backhaul link is served by the one beamforming group, and the beamforming gain is increased by increasing the number of antennas, in which the capacity of each backhaul link is improved. The wireless backhaul bandwidth factor β for the backhaul link is decreased since the capacity of each backhaul link is improved. Meanwhile, we can find that the β calculated in Manhattan urban scenario is lower than that of open rural scenario owing to a different deployment of BSs. In the open rural scenario, the SBSs are far from the MBS. But the SBSs are linearly arranged along the street and close to the MBS in Manhattan urban scenario. Thus, the quality of backhaul link in Manhattan is better than that of open rural scenario, for which the Manhattan scenario needs a lower β.

In figure 10, the black dotted line is a reference line drawn by the first two points of ‘Optimal user association M’. By comparing with the reference line, it can be found that the sum of logarithmic user rate is improved but the slope is gradually decreased when we increase the number of MTs, which means the system will be saturated when the number of MTs reaches a large enough scale. And the sum of logarithmic user rate based on the distributed optimization algorithm is greater than that of the SINR-based method as well as that of the CRE approach.

Additionally, the gap is getting wider between the distributed optimization algorithm and the SINR-based method as well as between the distributed optimization algorithm and the CRE method when the number of the MTs is increasing in figure 11. It is because that the SINR-based method and the CRE method only concern user association according to the maximal received SINR rule. While the distributed optimization algorithm jointly optimizes the user association and the wireless backhaul bandwidth allocation which improves the resource utilization. This effect is more obvious when the amount of users is very large, which means that the distributed optimization algorithm gives a more support to the large-scale users.

The user association situations both in the Manhattan urban and the open rural scenario with the distributed optimization algorithm are shown in figure 12 and figure 13. The number of user is set as 800 and the MBS is equipped with 100 antennas. In the Manhattan urban
15.25% users far from the MBS are associated with SBSs.

V. CONCLUSION

This article proposes a scheme for solving the user association and wireless backhaul bandwidth allocation problem in a two-tier HetNet at the mmWave band. The closed-form expression of sum logarithmic user rate is es-
Established according to the result of multi-user MIMO downlink employing ZFBF. Aiming at finding the optimal solutions of user association variable x_{ji} and the wireless backhaul bandwidth allocation factor β to maximize the sum of logarithmic user rate, a distributed optimization algorithm is applied to solve the problem. The conclusion is drawn as follows.

Firstly, the channel model generated by RT, which takes advantages of simulating the actual scene, is compared with 3GPP channel model. And it is verified that the RT channel model is equivalent to 3GPP channel model at 30 GHz. Secondly, simulation results reveal that 6% loads have been offloaded from the heavy-load MBS to the light-load SBSs with the SINR bias. Thirdly, by increasing the number of antenna array size of MBS, the sum of logarithmic user rate is logarithmically increased and the wireless backhaul bandwidth factor β is decreased owing to the beamforming gain. Simultaneously, by increasing the number of MTs, the sum of logarithmic user rate is linearly increased and the gap is getting wider between the distributed optimization algorithm and the SINR-based method as well as between the distributed optimization algorithm and the CRE method.

In order to promote this research, some ideas will be considered in the next work as: (1) Each small cell is allocated with a specific wireless backhaul bandwidth allocation factor β instead of unified bandwidth resource allocation. (2) Both MBS and SBS are equipped with large-scale antenna arrays. (3) Power optimization is added to the optimization problem.

ACKNOWLEDGEMENTS

This work was supported by NSFC under Grant (61725101 and 61771036), the ZTE Corporation, State Key Lab of Rail Traffic Control and Safety Project under Grant (RCS2017ZZ004 and RCS2017ZT008), Beijing Natural Science Foundation under Grant L161009. The work of Ning Wang was supported by the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University, under grant 2015D04.

References

[7] B. Ai et al., “Challenges Toward Wireless Com-

[20] 3GPP TR 38.901 V14.0.0, “Study on channel model for frequencies from 0.5 to 100 GHz (release 14),” Mar. 2017.

Biographies

Zhenxiang Su, received the B.E. degree from North China Electric Power University, Hebei, China, in 2012 and 2016. Since 2016, she has been working toward the M.S. degree with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China. Her research interest is 5G Heterogeneous Networks wireless backhaul technology. Email: 16120124@bjtu.edu.cn

Bo Ai, received the M.S. and Ph.D. degrees from Xidian University, Xian, China, in 2002 and 2004. He was with Tsinghua University, Beijing, China, where he was an Excellent Postdoctoral Research Fellow in 2007. He is currently a Professor and an Advisor of Ph.D. candidates with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University. His current research is channel modeling and 5G mobile communications for railway systems. Email: boai@bjtu.edu.cn

Yichuan Lin, received the B.E. degree in electronic engineering from Wuhan University, Hubei, China, the M.S. degree in electrical engineering from Syracuse University, New York, in 2014, 2016, respectively. He is currently a Ph.D. candidate in Beijing Jiaotong University, Beijing, China. His research interests include array signal processing, channel modeling for wireless communication, massive MIMO channel estimation and precoding, ultra-dense networks and heterogeneous networks.

Danping He, received the M.Sc. degree from Université Catholique de Louvain, Louvain-la-Neuve, Belgium, and the Politecnico di Torino, Turin, Italy, in 2010; and the Ph.D. degree from Universidad Politécnica de Madrid, Madrid, Spain, in 2014. She is currently conducting postdoc-
Guoyu Ma, (S’16) received the B.S. degree in electrical engineering from Beijing Jiaotong University, Beijing, China, in 2012, and is currently working toward the Ph.D. degree in the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University. His current research interests include the field of machine type communication and random access.

Li Niu, obtained her M.S. Degree at Beijing Jiaotong University in 2008. She joined ZTE in 2011. She has been mainly engaged in algorithm improvement work including radio resource management, scheduling algorithm and the simulation, but also in 3GPP standardization in 4G and 5G.

Ke Guan, (S’10–M’13) received the B.E. and Ph.D. degrees from Beijing Jiaotong University, Beijing, China, in 2006 and 2014, respectively. He is currently an Associate Professor with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University. His current research interests include measurement and modeling of wireless propagation channels, high-speed railway communications, and indoor channel characterization for high-speed short-range systems, including future terahertz communication systems.

Ning Wang, (M’13) received the M.A.Sc. degree in electrical engineering from the University of British Columbia, Kelowna, BC, Canada, and the Ph.D. degree in electrical engineering from the University of Victoria, Victoria, BC, Canada, in 2010, and 2013, respectively. Currently, he is an Associate Professor with the School of Information Engineering, Zhengzhou University, Zhengzhou, China. His research interests include resource allocation and security design of future cellular networks, wireless channel modeling, and statistical signal processing.