China Communications.
2021, 18(7):
103-116.
Flying Ad hoc Network (FANET) has drawn significant consideration due to its rapid advancements and extensive use in civil applications. However, the characteristics of FANET including high mobility, limited resources, and distributed nature, have posed a new challenge to develop a secure and efficient routing scheme for FANET. To overcome these challenges, this paper proposes a novel cluster based secure routing scheme, which aims to solve the routing and data security problem of FANET. In this scheme, the optimal cluster head selection is based on residual energy, online time, reputation, blockchain transactions, mobility, and connectivity by using Improved Artificial Bee Colony Optimization (IABC). The proposed IABC utilizes two different search equations for employee bee and onlooker bee to enhance convergence rate and exploitation abilities. Further, a lightweight blockchain consensus algorithm, AI-Proof of Witness Consensus Algorithm (AI-PoWCA) is proposed, which utilizes the optimal cluster head for mining. In AI-PoWCA, the concept of the witness for block verification is also involved to make the proposed scheme resource efficient and highly resilient against 51% attack. Simulation results demonstrate that the proposed scheme outperforms its counterparts and achieves up to 90% packet delivery ratio, lowest end-to-end delay, highest throughput, resilience against security attacks, and superior in block processing time.