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I. INTRODUCTION

Due to limited volume, weight and power con-
sumption, micro-satellite has to reduce data 
transmission and storage capacity by image 
compression when performs earth observation 
missions. However, the quality of images may 
become unsatisfied. It is well known that com-
pressed sensing (CS) can reconstruct sparse 
signals accurately from under-sampled linear 
measurements [1]. CS makes it possible to 
compress onboard images of micro-satellites 
maximally, thereby minimizing the required 
data transmission and storage space, as image 
can be recovered by CS to meet the require-
ment of missions. In the last decade, CS tech-
nology has been applied in many areas such as 
imaging processing, machine learning, radar 
detection, and computer science. Moreover, 
exploiting the sparsity of the target signal in 
wireless communications has been studied 
intensively in recent years [2], [3]. Typical 
examples include channel estimation [4]–[6], 
multiuser detection [7], and low-resolution 
analog-to-digital converters [8]–[10]. To this 
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used expectation propagation (EP) [28], [29] 
to perform approximate Bayesian inference, 
this paper resorts to AMP [15] and a fast direct 
method [30], so that the computational com-
plexity of sparse reconstruction with spike and 
slab prior is significantly reduced. In practice, 
the sparsity pattern is unknown, and the origi-
nal AMP cannot be directly applied to recover 
signals with structured prior distribution. To 
address these problems, following the Turbo 
AMP framework [31], [32], an efficient meth-
od to learn the hyperparameters of structured 
spike and slab prior using expectation maxi-
mization (EM) [14], [33] and Bethe free en-
ergy [4], [34], [35] optimization is proposed. 
It is important to note that though this paper 
considers the linear Gaussian model, the pro-
posed method can be extended to generalized 
linear models in a straightforward way using 
the GAMP [36], [37]. To test the effectiveness 
of the proposed method, various experiments 
on both synthetic and real data are performed, 
showing that it achieves excellent performance 
in recovering structured sparse signals with 
Gaussian process prior.

The rest of this paper is organized as fol-
lows. In Section II, the generalized linear 
model with structured spike and slab prior is 
described, which encodes the structured spar-
sity using a transformed Gaussian process. 
In Section III, the posterior of the proposed 
model is computed using the framework of 
AMP. Section IV presents a unified learning 
scheme of the hyperparameters via EM and 
Bethe free energy minimization. To reduce 
the computational complexity, in Section V, a 
novel method, namely fast direct method, is 
described. Extensive experiments are conduct-
ed in Section VI to demonstrate the efficiency 
of our method. Finally, some conclusions and 
future directions are made in Section VII.

II. SYSTEM MODEL

Consider the generalized linear model (GLM) 
with structured prior as shown in figure 1. The 
input unknown signal vector x∈N  is gen-
erated following a structured prior distribu-

end, plethora of methods have been studied 
in the past years. The Bayesian interpretation 
of sparse reconstruction involves maximum a 
posteriori (MAP) inference with some sparsi-
ty-promoting priors, e.g., Laplace prior [11], 
automatic relevance determination [12], Di-
richlet process prior [13], and spike and slab 
prior [14]. Among various Bayesian methods, 
approximate message passing (AMP) [15] is 
one state-of-the-art algorithm for sparse recon-
struction. AMP can be seen as a large system 
limit approximation of belief propagation [16] 
and is deeply related to the seminal Thou-
less-Anderson-Palmer (TAP) equations in spin 
glass theory [17]. Moreover, to deal with gen-
eral linear mixing problems, AMP has been 
extended to generalized AMP (GAMP) [18], 
which greatly enables the wide applicability of 
the AMP framework in sparse reconstruction.

While many practical signals can be de-
scribed as sparse, they often exhibit an un-
derlying structure, such as clustered sparsity, 
i.e., the nonzero coefficients occur in clusters, 
which is also known as group sparse or block 
sparse [19], [20]. In such settings, the nearby 
coefficients exhibit dependencies and exploit-
ing such intrinsic structure beyond simple 
sparsity can significantly boost the reconstruc-
tion performance [20]. From the optimization 
perspective, various regularizations that model 
specific sparsity pattern are proposed, e.g., 
group LASSO [21], StructOMP [22]. From the 
Bayesian perspective, a number of methods 
have been developed to use structured priors to 
model both sparsity and cluster patterns simul-
taneously. The main effort of these algorithms 
lies in constructing a hierarchical prior model, 
e.g., Markov tree [23], structured spike and 
slab [24]–[26], hierarchical Gamma-Gaussian 
[27] to encode the structured sparsity pattern.

In this paper, using the structured spike 
and slab prior [24]–[26] with high flexibility 
in modeling the sparsity pattern, an efficient 
message passing algorithm, termed as AMP 
with structured spike and slab prior (AMP-
SSS), is proposed to recover structured sparse 
signals with no prior knowledge of the spar-
sity pattern. Different from [24]–[26], which 
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prior covariance matrix Σa  is constructed us-
ing kernel functions, which further constitute 
a set of hyperparameters. In this paper, the 
squared exponential kernel function is taken 
as an example. That is, the (i j, )th  element of 
Σa  is defined as

	 (Σa )
ij
= −κ exp ,

 
 
 

( )i j
2
−
s2

2

� (7)

so that this kind of covariance matrix include 
hyperparameters κ  and s.  Due to the mar-
ginal characteristic of multivariate Gaussian 
distributions,  ; ,pa a a(γ γ γi i i i) = Σ ( ) , where 

γ i
a  and Σi

a  are the ith element of γa  and the 
ith diagonal element of Σa ,  respectively. With 
pa (γ i ) , the marginal prior probability of xi  
being active can be calculated as

    

p s s p d( i i i i i= =1 Ber |)

= φ

∫
 
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 
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γ

(
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Note that the choice of f x( i )  in (4) is flex-
ible, which is an advantage of spike and slab 
prior. This paper only focuses on Gaussian 
distribution, i.e., f x x x( i i) =  ( ,; ˆa aτ ) . The 

structured spike and slab prior can encode 
prior information about the sparsity pattern. 
Specifically, the mean value vector γ̂a  controls 
the expected degree of sparsity while the co-
variance matrix Σa  determines the prior cor-
relation of the support [24]–[26]. As in Gauss-
ian processes, the covariance matrix Σa  can 
be constructed using various kernel functions 
such as radial basis function (RBF) [38]. The 
joint posterior distribution of x , s , and γ  can 
be written as

tion p0 (x) . The signal vector x  then passes 
through a linear transform
	 z Ax= , � (1)
where A∈M N×  is the measurement ma-
trix and is assumed to be known. The output 
observation vector y  is obtained through a 
component-wise random mapping, which is 
described by a factorized conditional distribu-
tion

p p y z p y A x(y z| = | | .) ∏ ∏
m m

M M

= =1 1
( m m m mi i) =  

 
 

∑
i

N

=1

� (2)
The GLM arises in various problems in sig-

nal processing, communications, and machine 
learning. The classic linear Gaussian model,

	        y Ax w= + , � (3)
where w w I∈M ~ ;0, ( σ n M

2 )  is a special 

case of GLM with p y z y z( m m m m n| ; ,) =  ( σ 2 ) , 

where  ( ; ,x m C)  denotes the Gaussian dis-
tribution of x  with mean m  and covariance 
C  and IK  denotes the identity matrix of 
dimension K . This paper only considers the 
linear Gaussian model (3). Extension to GLM 
is straightforward.

To model the structure of the sparsity pat-
tern of signal x , the authors in [24] proposed 
a structured spike and slab prior inspired by 
Gaussian processes [38]. Specifically, the hier-
archical prior distribution of x  reads

	 p p x s(x s| ) =

= − +

∏

∏
i

i

N

N
=

=

1

1
(1 ,

(

s x s f x

i i
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)δ

)
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� (4)

	 p s( ) Ber∣s γ =∏
i

N

=1
( i i|φ γ( )) ,� (5)

	 pa a a(γ γ γ Σ) =  ( ; ,ˆ ) ,� (6)
where s∈{0,1}N  is the hidden support vector, 
δ (⋅)  is the Dirac delta function, f x( i )  is the 
distribution of the nonzero entry xi , φ (⋅)  is 
the standard Normal cumulative distribution 

function (CDF) i.e., φ (x t dt) =
−
∫
x

∞

 ( ;0,1) , 

Ber |(s p)  denotes Bernoulli distribution 
function with p s p p( = =1| ) , and pa (γ )  is 
the a priori probability of γ.  Furthermore, the Fig. 1.  Generalized linear model with structured prior [36].
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where Z is the normalization constant.
The goal is to estimate x from the noisy ob-

servations y using the minimum mean square 
error (MMSE) criterion. It is well known 
that the MMSE estimate of xi  is the poste-
rior mean, i.e., x x p x dxˆi i i i= ∫ ( | y ) , where 
p x( i | y )  is the marginal posterior distribution 
defined as

     p x p d d( i i| y x s γ y x γ)  = ∑
s
∫∫ ( , , | ) \ ,� (10)

where x\i  denotes all variables in x  exclud-
ing xi . Direct computation of (10) requires 
high-dimensional summations and integrals, 
rendering the complexity of exact calculation 
prohibitively high. The factorization in (9) 
can be explicitly encoded by a factor graph, 
one kind of undirected bipartite graph that 
connects the distribution factors in (9) with 
the random variables that constitute their ar-
guments [16], as shown in figure 2. The round 
nodes denote the random variables while 
the square nodes denote the factors in (9). In 
fact, since the overall factor graph in figure 
2 has loops, exact inference is NP-hard [39]. 
As such, we resort to approximate inference 
methods.

III. EFFICIENT RECONSTRUCTION

3.1 AMP and GAMP

Before proceeding to deal with the case with 
structured priors, first take a look at the simple 
case with separable priors, i.e.,

	 p p x0 0(x) =∏
i

N

=1
( i ) .� (11)

As shown in figure 3, the factor graph of the 
joint distribution with separable priors is a 
subgraph of that with structured priors. Conse-
quently, we can utilize the efficient algorithms 
such as AMP and GAMP algorithms to per-
form optimal reconstruction in the subgraph of 
figure 2. To deal with arbitrary separable pri-
ors, AMP has been extended to Bayesian AMP 
(B-AMP) [18], [40]. Specifically, our method 
resorts to the Bayesian form AMP, B-AMP, 
which is summarized in Algorithm 1. For de-
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Fig. 2.  Factor graph of the joint distribution.
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Algorithm 1.  AMP [18], [40].
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3.3 Message computation

This subsection addresses the computation of 
messages in the factor graph in a full round of 
single turbo iteration. Note that the message 
passing within the left subgraph is performed 
using AMP as described in Tab. I, so that our 
main focus in this section is on the message 
computation within the right subgraph and 
that between the two subgraphs. Specifically, 
at the tth turbo iteration, we assume that the 
message from factor node fdi  to variable γ i  is 

µ γ γ γd i i d d
t t t
→ → →γ γ γ( ) = Σ ( ; ,ˆ

i i ) . Then, we will 

obtain the updated message µ γd i
t+
→
1
γ ( )  in the 

following text, which is also demonstrated in 
Algorithm II.

At the start of turbo iteration, i.e., t =1 , 
µ γd i

t
→γ ( )  is initialized as the marginal prob-

ability of the joint prior pa (γ )  defined in 
(6), i.e., γ γˆd i

1 a
→γ i

= , and Σ = Σ1 a
d i→γ i

. Since 
µ γ µ γγ γ

t t
→ →c i d i( ) = ( ) , the message from fci  to 

si  is calculated as

     

m s m dc s i i d i i
t t
→ →( = =1)

= φ

∫φ γ γ γ

 
 
 
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+ Σ

)

d
t
→

t
d
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γ
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,� (12)
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 
 

 
 

(
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d
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→

t
d

γ i
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γ

i

i
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tailed derivation, the readers are referred to 
[18], [40].

3.2 The turbo AMP approach

The AMP algorithm cannot be directly applied 
to reconstruct the structured signal of the form 
(4)-(6) due to its structured prior. To address 
this problem, this paper resorts to the Turbo 
approach proposed in [31], [32], [41]. In par-
ticular, the factor graph in figure 2 is divided 
into two subgraphs and then alternate between 
message passing within subgraphs and mes-
sage passing between subgraphs in a turbo-like 
manner until they reach a common agreement, 
i.e., the iteration converges. Specifically, prob-
abilistic beliefs of the hidden support elements 
s are exchanged between the two subgraphs in 
figure 2, the left one exploiting the observation 
model and the right one exploiting the struc-
tured spike and slab prior. One full round of 
alternation is designated as a “turbo iteration”.

Denote by µc s i
t
→ (s )  the message from 

factor node fci  to variable node si  at the tth 
turbo iteration while the message in the op-
posite direction is denoted by µs c i

t
→ (s ) . The 

other messages in factor graph shown in figure 
2 follows the same notation. The messages 
µc s i

t
→ (s i N) , 1, ,= …  can be viewed as soft es-

timates of the support elements and treated as 
priors for the left subgraph. Thanks to the de-
coupling characteristic of the turbo approach, 
these tentative priors can be seen as separable 
priors. As a result, the left subgraph reduces 
to the ordinary linear Gaussian model for 
which AMP can be applied. After convergence 
of AMP, the left subgraph yields messages 
µb s i

t
→ (s ) , which are then treated as priors for 

the right subgraph. Then, we update the soft 
estimates of the support elements using EP 
without inner iterations, as detailed in section 
3.3. The resulting leftward message µc s i

t
→
+1 (s )  

are treated as priors for AMP on the left sub-
graph at the next turbo iteration. This process 
continues until convergence or a maximum 
number of turbo iterations. The final estimate 
of signals x  is the output of AMP in the last 
turbo iteration. Fig. 3.  Factor graph of the joint distribution with separable prior.
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Note that the normalization constant Z R( i i,Σ )  
is written in the form of two sub terms related 
to the zero support (1−λi i

t z)  and the active 

support λi i
t nz  as in [42]. Then, by definition, 

the posterior mean and variance are
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To avoid potential numerical problem, it is 
better to rewrite
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Now we focus on the computation of mes-
sages µb s i

t
→ (s )  from fbi  to si  after conver-

gence of AMP. From the marginal posterior 
distribution in (17), the posterior support prob-
ability is

	 p spost ( i = =1 ,)
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In the logarithmic domain, we have
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which implies that
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From (12) and (13), and the message passing 
rule, µ µs b i c s i

t t
→ →(s s) = ( ) . Then, the message 

from fb  to xi  is obtained as
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At this step, the message from the right 
subgraph to the left subgraph has been ac-
complished. Taking µb x i

t
→ i

(x )  as the prior 
distribution for xi , i.e., p x xa ( i b x i) = µ t

→ ( ) , 
the left subgraph is thus equivalent to a linear 
Gaussian model with separable priors, for 
which AMP can be directly applied. The de-
tailed implementation of AMP within the left 
subgraph is illustrated in Tab. I and is omitted 
here, except for the definition of g Ra i i( l l,Σ )  

and g Rc i i( l l,Σ )  at iteration t  for the prior in 

(15). For notational brevity, the l  iteration in-
dex within AMP is omitted. At the t  th turbo 
iteration, for each inner iteration of AMP, the 
marginal posterior distribution of xi  becomes

= Σ

= − +

p x R

(

(
t

1 ; , ,

1 ; ,

(
− +

i i i

π δ π

λ δ λ τ

| ,

i i i i i i

i i i i

t t

t t

)

)
Σ

(

(

x x m V

x x x

Z R

)

)

)
( i i,Σ





)
(

( ˆa a

)

)
 (x Ri i i; , )

� (17)
where

= − +

= − + Σ

Z R

(
∫
(

1
  (

i i

1 , ; ,

,

λ λ

Σ

i i i i
t z t nz)
λ δ λ τ

)

 

i i i i i i i i
t t) (x x x x R dx)

,

 ( ; ˆa a ) ( )

� (18)

	    i
z =

exp
 
 
 
2

−

πΣ

2
R
Σ

i

i
2

i , � (19)
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For notational brevity, let us define
C di i i d d i i

t t t t
 ∫φ γ γ γ γ φ α( ) ( ; , ,ˆ → →γ γi i

Σ =) ( )
� (35)

	 αi
t


1

γ

+ Σ

ˆd
t
→

t

γ

d

i

→γ i

. � (36)

Then, we have
	 Z C Cγ i

= + − −η ηi i i i
t t t t(1 1 .)( ) � (37)

According to the massage-passing update rule 
of EP [28], we get

	 µ γc i
t
→γ ( ) ∝

Proj

µ γ
Φ

γ
t
→

  
c i

q

(

t (γ
)
i ) . � (38)

Choosing the Gaussian distribution set Φ,  
then the projection operation q p= ProjΦ [ ]  re-
duces to moment matching, i.e., the mean and 
variance are the same with respect to distribu-
tion p  and q . So the mean and variance of γ i  

with respect to qt (γ i )  need to be computed. 
Specifically, the mean can be evaluated by

E ; ,
q

+ − Σ

t (γ

1

i )

Z
−

(γ γ φ γ γ γ γ

γ

η

i

i i i i d d i

i
t

)

∫

= Σ

γ φ γ γ γ γ

Z

i i i d d i

η

[ ]
γ

1 ; , .

i
t

i

∫

(

(

) 

)

(

(

ˆ t t

ˆ

→ →

t t
→ →

γ γi i

γ γi i

)d

)d

� (39)
For notational brevity, we follow the deri-

vation in [38] and define

   

D di i i i d d i
t t t


= +C

∫γ φ γ γ γ γ

i d
t tγ̂ →

(

γ i

)
Σt t

d i

(
→γ

1
i

; ,



+ Σ

ˆ → →

(α
t
d

γ γ

→

i i

γ

;0,1

Σ

i

)
,

)
� (40)

where Ci
t  and αi

t  are defined as in (35) and 
(36), respectively. Thus

E 1 .
qt (γ i )

(γ η η αi i i i i i) = + − −
Z
1

γ i

  
t t t t tD D( )( )

� (41)
To calculate the variance of γ_i, we first evalu-
ate its second moment

E ( ) ; ,
qt

+ − Σ

(γ

1

i )

Z
−

(γ γ φ γ γ γ γ

γ

η

i

i i i i d d i
2 2

i
t

)

∫

= Σ

γ φ γ γ γ γi i i d d i
2

Z
η

(

γ

i
t

1 ( ) ; , .

i

∫

)



(

(

ˆ

ˆ

t t
→ →

t t
→ →

γ γi i

γ γi i

)

)

d

d

� (42)
As in [38], the integral can be calculated as

From (26) and (27), note that given the prior 
support probability of p s s( i i i) = Ber |( λ t ) , the 

extrinsic information of the support si  pro-
posed by the left subgraph is

	 p s sext ( i i i) = Ber | ,( η t ) � (29)

where

	 ηi
t =
 i i

nz z


+
i
nz

. � (30)

Therefore, the message from node fbi  to vari-
able si  is

	 µ ηb s i i i
t t
→ (s s) = Ber | .( ) � (31)

To compute µ γc i
t
→γ ( ) , i.e., the message 

from fci  to γ i , the EP [28] method is resorted. 
Before proceeding to the detailed message 
computation, the definition of probability dis-
tribution projection operation induced by the 
Kullback-Leibler divergence is given. Mathe-
matically, the projection of a particular distri-
bution p  into a distribution set Φ  is defined 
as
	 Proj argmin ,Φ ∈Φ[ p D p q] = q (  ) � (32)
where D p q( || )  denotes the Kullback-Leibler 
divergence. If  p∈Φ , then the projection re-
duces to the identity mapping, i.e., q p= .

The joint posterior probability of si  and γ i  

is

∝ Σ

p s s f s(
Ber | Ber | ; , ,

i i b s i ci i i c i, ,γ µ γ µ γ

(s s

)

i i i i i d d

∝

η φ γ γ γt t t)

t t
→ →(

(
) (

( ))
) γ

(
(
ˆ → →

)

γ γi i )
� (33)
where ∝  denotes identity between two dis-
tributions up to a normalization constant. The 
tentative marginal posterior probability of γ i  

can be evaluated as

q s st t(γ η φ γi i i i i) =
Z
1

γ i

∑
si



Ber | Ber |

(γ γ

(

i d d; , ,ˆ t t
→ →γ γ

)

i i
Σ

(

)

( ))

� (34)
where Zγ i

 is the normalization constant

= Σ

= Σ

= Σ

Zγ

η φ γ γ γ γ

∑

∫
i

+ − − Σ

s

i i i d d i

i

t t t

∑

(

s

∫
1 1 ; , .

i

∫

Ber | Ber | ; ,

Ber | Ber | ; ,

(
η φ γ γ γ γi i i d d i

t t t

(

(

)
)

s s d

s s d

∫



i i i i i d d i

i i i i i d d i

(

η φ γ γ γ γ

η φ γ γ γ γ

(

t t t

t t t)

)

; ,

(

ˆ → →

)

(

(

γ γ

)
i i

 (

(

(

)
ˆ

)

)

d

)

)

→ →





γ γi i

(

( ˆ

ˆ

)

→ →

→ →

d

γ γ

γ γi i

i i )

)
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µ γd i

t+
→
1
γ ( )

∝ Σ

∝







(
(
γ γ

γ γ

(

i d d

i c c

γ γ

; , ,

; ,
i i i

ˆ

ˆ

; ,

t t

t t

+ +

ˆ

→ →

→ →
1 1

t t+ +

γ γ

γ γ

i i

1 1

i i

Σ

Σ )
)
)

� (52)

where

	 Σ = −t
d
+
→
1
γ i

 
  
 Σ Σ

1
t t
i c
+1

1

→γ i

−1

, � (53)

	 γ̂ d d
t t+ +
→ →
1 1
γ γi i
= Σ −

 

 
  
γ
Σ Σ

î
t

t t
i c

+

+

1

1

µc
t
→

→γ

γ

i

i , � (54)

and γ̂ i
t+1 , Σt

i
+1  are the ith element of γ̂ t+1  and 

the ith diagonal element of Σt+1 , respectively.

IV. LEARNING OF HYPERPARAMETERS

In practice, since the prior parameters that en-
code prior distribution of γ  are unknown, they 
need to be learned from data. In the sequel, 
expectation maximization (EM) algorithm is 
utilized to learn these hyperparameters.

The hidden variables are chosen as  x , s , 
and γ . let θ γ Σ={ , ,σ x τn

2 a a a a, ,ˆ }  denote hy-

perparameters and θt  denote the estimation at 
the tth  iteration. The EM algorithm alternates 
between the following two steps:
	  Q p(θ θ x s γ y y θ, E ln , , , | ; ,t t) = { ( ) } � (55)

	 θ θ θt t+1 = arg max , ,
θ

Q ( ) � (56)
where E{ | ;⋅ y θt}  denotes expectation condi-

tioned on observations y  under parameters θt , 
i.e., the expectation is with respect to the pos-
terior conditional distribution p (x s γ y θ, , | , t ) . 

The exact computation of p (x s γ y θ, , | , t )  is 

intractable in practice. Fortunately, the Turbo 
AMP framework offers an efficient approx-
imation, whereby the E step in (55) can be 
readily calculated as
Q

= + +

= E ln | | | | ;

E ln | ln | ln |

(

− − − −

θ θ

{






1 1
2 2

,

∑ ∑ ∑
a i i

M N N

(
= = =

t

γ γ Σ γ γ Σ y θ

1 1 1

)
p p p p(y z x s s γ γ y θ

p y z p x s p s

ˆ ˆa a a a

(

)T 1

)

a a i i i i

(

(

)

)−

)

(

(

(

)

) a (

ln det | ; .

)

(

) t}

)

( γ

t




)

� (57)
The joint optimization of θ  is impractical and 
thus the incremental EM update rule is adopt-

   

W di i i i d d i
t t t= Σ

= + Σ −2

∫

−

γ γ

γ φ γ γ γ γ

ˆ ˆ

(
d i i i d
t t t t t

2

Σ

→ →

t t t
d i i

γ γ

(

→

i i
D C

γ i

)

)
1

2



+ Σ

α α

(


t
d

(

→

; ,

γ

(
i

ˆ → →

(
;0,1

γ γi i

)
,

)2 )
)

� (43)

so that

E .
qt (γ i ) (γ i

2 ) =
η η γi i i d d iW Wt t t t+ − + Σ −(1 )(( ˆ

Z

→ →

γ i

γ γi i)2 )

� (44)
Therefore, the posterior variance of γi can be 
easily calculated as
  Var E E .

q q qt t(γ γ γi i) (γ γ γi i) = −( ) ( 2 2) t ( i )
( i ) � (45)

Having derived the posterior mean and vari-
ance of γi, the message from factor node fci to 
variable node γi is updated as

 
µ γc i

t
→γ i

( )

∝ Σ

∝





(

(

γ γ

γ γ γ

i c c

i i i

; , ,

;E ,Var



ˆt t

q q

→ →

(
t t

γ γ
(

γ γ

γ γ

i i

i d d

i i

; ,
) (

ˆ t t
→ →

)

γ γi i

)
Σ

(

)
) ( 2 ))

� (46)

where

	 Σ Σt t
c d

1 1 1

→ →γ γi i

= −
Var

qt (γ i )
(γ i )

, � (47)

γ̂ c c
t t
→ →γ γi i

= Σ −
 
 
 
 

Var

E
qt

q

(

t

γ

(

i

γ

)

i )

(γ
(γ

i )
i ) Σ

γ̂ d
t

t

d

→

→

γ

γ

i

i

. � (48)

Then, combining all the messages from factor 
node fci  to γ i , 1, , ,i N= …  and the Gaussian 
process prior (6), the updated posterior distri-
bution of γ  at the t +1  th iteration is obtained 
as

	 ∝

∝

qt t+



 

1 (γ γ γ Σ

(
(γ γ Σ

γ γ Σ γ γ Σ

)

; , ; ,

; , ,

∝

ˆ

ˆ ˆ
t

a a



+1

(

)
t

; ,

+1

ˆ

)

a

(

a )
t
c t

∏
i

→

N

=1

γ

µ γc i→

t )
γ i
( )

� (49)

where,

	 Σ Σ Σt t+1 a= +(( )− −1 1( c→γ ) )−1

, � (50)

  γ Σ Σ γ Σ γˆ ˆ ˆt t t t+ +1 1 a a= +(( )− −1 1( c c→ →γ γ) ) , � (51)

a n d  Σt t t
c c c→ → →γ γ γ= Σ … Σdiag , ,( 1 N )  a n d 

γ̂ ˆ ˆt t t
c c c→ → →γ γ γ= …(γ γ

1
, ,

N )
T

.

Finally, the message from factor node fd  to 
variable node γ i  at the (t +1)  th iteration is 
updated as
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	 γ θ θa, 1t t+ = arg max ,
γa

Q ( ) � (65)

Setting the derivative of Q (θ θ, t )  with respect 

to γ a  to zero results in

∂
∂
γa Q (θ θ Σ γ γ y θ, E | ; 0.t t) = − ={( a a)−1 ( ) }

� (66)
so that γ a  is updated as

	 γ γa, 1t+ = E
qt (γ) ( ) � (67)

where q qt t(γ ) =∑
i

(γ i )  and qt (γ i )  is defined 

in (34).

4.4 Learning hyperparameters of Σa

To learn these parameters of Σa  defined by 
(7), the EM update can be also applied. How-
ever, the computation is a bit tedious. By de-
fining

	 (Σ)ij = −exp
 
 
 

( )i j
2
−
s2

2

,� (68)

we have Σa = Σκ  from (7) and
Q

= + +

− − − −
2 2

E ln | ln | ln |

(

1 1

θ θ

κ






,

(

∑ ∑ ∑
a i i

M N N

γ γ Σ γ γ Σ y θ

= = =

t

1 1 1

)
p y z p x s p s

a a a

(

)T 1

a a i i i i

( )

)

− ( )

(

ln det | ; .

)

(κ N t

(

)

γ )





� (69)
Setting the derivative of Q (θ θ, t )  with respect 

to κ  to zero results in

= − − −

=

∂
∂
κ

0,

E | ;

Q

 
 
 

2

(θ θ

κ
1

,

2 (

t

γ γ Σ γ γ y θ

)
a a a)T 1( )− ( )

2
N
κ

t

� (70)
After some algebra, we get

κ

=

= − −

t t+

N

N
1

1

1 a a a= − −

∑

tr E | ;

i

N

=1

{
N
1

(

ξ γ

Σ γ γ γ γ y θ

ii i

E | ;

Var ,

a a a

{ }

)

(
−

γ γ Σ γ γ y θ

1

qt (γ i

 
  

)

(

(

)T 1

)

(

)

)

(

− (

)T
)

t }

� (71)
where ξij  is the (i j, )  th element of Σ−1  and 
the last equality is due to the update of γ a  in 
(67).

As for the learning of length-scale pa-

ed, i.e., one element is updated at a time while 
holding the other parameters fixed.

4.1 Learning noise variance in linear 
Gaussian case

In this case, p y z y A x( m m m mi i n| ; ,) =   
 
 

∑
i

σ 2 , 

the update of σ n
2  follows

	 (σ n
2 )t+1

= arg max , .
σn

2 >0
Q (θ θt ) � (58)

Maximizing Q (θ θ, t )  with respect to σ n
2  re-

sults in

(σ n m mi i m
2 )t+1

= − +
M
1 ∑ ∑

m i

M

=1

 
 
  

 
 
 

y A x Vˆ t t
2

. � (59)

Since p y z y z( m m m m n| ; ,) =  ( σ 2 ) , the update 

equation (59) can be rewritten in the form of 
statistics of zm , which can be calculated to be

	 (σ νn m m m
2 )t+1

= −
M
1 ∑

m

M

=1

 
  ( y ẑt z)2

+ ( )t
, � (60)

where ẑm
t  and (νm

z )t

 in the linear Gaussian 

case are calculated to be

	 ẑm
t =

V y Zm m n m
t t

(σ n m

+
2 )
(
t

σ

+

2

V

)t

t
, � (61)

	 (νm
z )t

=
(
V

σ

m n

n m

t

2

(
)
σ
t
+

2

V

)t

t
, � (62)

where Zm
t  and Vm

t  are the values of Zm
l  and 

Vm
l  in Tab. I after the tth turbo iteration. It can 

be noted that using statistics of zm  leads to 
recursive update of noise variance. The update 
equation (60) is used in Section VI.

4.2 Learning x̂a  and τ a

Following the derivation in [14], Q (θ θ, t )  is 

maximized with respect to x̂a  and τ a  and the 
update equations are

	 x̂a, 1t+ = ∑
∑

i
π

i
π
i i
t m

i
t , � (63)

  τ πa, 1 a,t t t+ =
∑

1

i
π i

t ∑i
i i i
 
(x m Vˆ − +)2


. � (64)

4.3 Learning γ a

For γ a , the EM update is
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 ={10 ,10 ,1,10,50,100,500− −3 2 }  performs quite 
well most of the time and is used in Section 
VI.

V. COMPLEXITY REDUCTION VIA FAST 
DIRECT METHOD

In this section, the computation complexity 
of the proposed algorithm is analyzed. The 
turbo message schedule implies that the com-
plexity consists of two parts: AMP operation 
and update of soft support by the structured 
prior. The complexity of AMP is  (MN )  
[18], [36]. However, the update of soft support 
needs matrix inversions as shown in (50) and 
(51), whose direct solution scales as  (N 3 ) , 

which is prohibitively high in large-scale 
setting. To make this algorithm applicable 
in high-dimensional settings, the complexity 
needs to be further reduced. Note that (50) and 
(51) can be rewritten as

	      Σ Σ Σ Σ Σt t t+1 a a= +c c→ →γ γ( )−1
, � (74)

         
γ Σ Σ Σ γˆ ˆt t+1 a a= +

+ +Σ Σ Σ γ

c c→ →

a a

γ γ

(
(

t t
c c→ →γ γ)−

)
1

−1

ˆ .
� (75)

Therefore, the computational bottleneck 
lies in the inversion of matrix Σ Σa + t

c→γ . In 
[43], a kind of fast direct method is proposed 
to compute the inversion of matrix of the form 
C D K= +  with complexity  (N Nlog2 ) , 
where D  is a general diagonal matrix with 
non-negative constants just like Σt

c→γ , K  is 
computed using a specified covariance kernel. 
Since Σt

c→γ  is a diagonal matrix, and that only 
the diagonal terms of Σt

p
+1  need to be comput-

ed, the complexity of (74) scales as  (N 2 ) . 

The matrix-by-matrix product in (75) need 
not be computed directly. Instead, do the ma-
trix-by-vector multiplications first, so that the 
complexity in (75) is  (N 2 )  as well. There-

fore, the overall complexity of the proposed 
algorithm then reduces to  (MN N+ 2 )  ig-

noring N Nlog2  term per iteration.

rameter s , however, there is no closed form 
update equations. To address this problem, a 
free energy view is adopted in optimizing s . 
Following similar derivation in [35], the Bethe 
free energy after the tth turbo iteration can be 
calculated as

F sBethe
t ( ) = +

− Σ +

+ +

∑
m

∑

∑
m

M

i

M

N

=

=

=

1

1

1

 

 
 

 
 
 
 

1 1
2

ln , ,

y A x

ln 1

m mi i

Z R

 
 

 
 

−

2

(

∑

(
i

N

=

σ
1

i i

(

n
2

σ

)t

n
2

)

ˆ

)t

t

∑

ν

i

N

2

=

ˆ

1

i i i
t t+ −

Ami i

M

2

(

2

2

ν

x Rˆ

ˆ

Σ

ln 2

t

i

π σ

)

(

2

n
2 )t

� (72)

where the values x Rˆi i i i n
t t, ,ν σˆ , ,Σ ( 2 )t

 are ob-

tained from AMP-SSS (refer to Algorithm 
1 and Algorithm 2). At first glance, it seems 
that the Bethe free energy is not related to 
the parameters. In fact, F sBethe

t ( )  depends on 

s  implicitly through x Rˆi i i i n
t t, ,ν σˆ , ,Σ ( 2 )t

. For 

each values of s , the associated F sBethe
t ( )  is 

obtained as in (72) and the optimal s  corre-
sponds to the minimum free energy, i.e.,

	 s F sˆ = arg max .
s Bethe

t ( ) � (73)

Though the search space for s  is huge, 
numerical results show that the performance 
is insensitive to s . As a result, the search 
space can be restricted to a small set with 
typical values. Denote by   the search 
space set. It is empirically demonstrated that 

Algorithm 2.  AMP with structured spike and slab priors (AMP-SSS).

Initialization: µ µd i d ii
1 1
→ →γ γi i

= Σ = Σ = …0, 0,, ,   1, ,i N , x0 = 0 .
for t = 1, . . .,Tmax do
	 Compute λi

t  via (16);
	 Perform AMP within the left subgraph;
	 Compute i

z , i
nz  and ηi

t  via (19), (20) and (30);
	� Compute Σt

c→γ i
 and µc

t
→γ i

 via (47) and (48); Compute Σt
p
+1  and Σt

p
+1  via (50) 

and (51);
	 Update Σt

d
+
→
1
γ i

 and µd
t+
→
1
γ i

 via (53) and (54).

	 If ‖ ‖‖ ‖x x xt t t+1 − </ turbo , break;
end for
�
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NMSE 20log /= −10 2 2(‖ ‖‖‖x x xˆ )  w i t h  x̂  
being the recovered signal. The pattern recov-
ery success rate is defined as the ratio of the 
number of successful trials to the total number 
of experiments, where a trial is successful if 
the support is exactly recovered. A coeffi cient 
whose magnitude is less than 10−4  is deemed 
as a zero coeffi cient.

6.1 Sparse gaussian data

Synthetic block-sparse signals are generated 
in a similar way as [45], [47], where K nonze-
ro elements are partitioned into L blocks with 
random sizes and random locations. Set N = 
100, K = 25, L = 4 and the nonzero elements 
are generated independently following Gauss-
ian distribution with mean µ0 = 3  and vari-
ance τ 0 = 1 . The results are averaged over 100 
independent runs. Figure 4(a) and fi gure 4(b) 
depict the success rate and pattern recovery 

VI. RESULTS AND DISCUSSION

In this section, a series of numerical exper-
iments are conducted to investigate the ef-
ficiency of the proposed algorithm, referred 
to as AMP-SSS. Comparisons are made to 
algorithms without consideration on struc-
tures, such as Basis Pursuit (BP) [44], and 
EM-BG-GAMP [14], as well as some state-
of-the-art methods without prior knowledge 
of the sparsity pattern but taking into account 
structures, e.g., MBCS-LBP [27], PC-SBL 
[45] and its AMP version PCSBL-GAMP 
[46]. The performance of oracle least squares 
estimator (Oracle LS) which knows the true 
support is given as the benchmark. Note that 
since the proposed AMP-SSS requires no prior 
knowledge of the sparsity pattern, e.g., sparse 
ratio, number of groups, etc., no comparisons 
are to those algorithms that need partial or full 
knowledge of the sparsity pattern.

Throughout the experiments, no prior 
knowledge of the sparsity pattern, e.g., sparsi-
ty ratio, number of nonzero groups, is known 
except for Oracle LS. The maximum number 
of iterations for PCSBL-GAMP, and EM-
BG-GAMP is set to be Tmax = 200 , and the 
tolerance value of termination is toc =10−6 . 
For AMP-SSS, there are two iterative loops. 
The inner maximum number of AMP itera-
tions is set to be Lmax = 50  and the outer max-
imum number of turbo iterations is set to be 
Tmax = 50 . The tolerance values for the inner 
AMP and outer turbo iterations are set to be 
amp =10−6  and turbo =10−6 , respectively. To 
avoid divergence, the damping technique is 
used for AMP-SSS, and the damping factor is 
set to be 0.3. For other algorithms, the default 
settings are used. The elements of measure-
ment matrix A∈M N×  are independently 
generated following standard Gaussian dis-
tribution and the columns are normalized to 
unit norm. The success rate is defined as the 
ratio of the number of successful trials to the 
total number of experiments, where a trial 
is successful if the normalized mean square 
error (NMSE) is less than -50 dB, where Fig. 4.  Block sparse Gaussian signal reconstruction, noiseless case.

(a) Success rate vs. M/N

(b) Pattern success rate vs. M/N
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N = 100, K = 25, L = 4. The results are aver-
aged over 100 independent runs.

Figure 6(a) and fi gure 6(b) depict the suc-
cess rate and pattern recovery success rate, 
respectively. It can be seen that AMP-SSS 
achieves the highest success rate and pattern 
recovery rate at various measurement ratios, 
implying that the proposed AMP-SSS is very 
robust to the true prior of the nonzero ele-
ments. In addition, compared with PC-SBL 
and PCSBL-GAMP, AMP-SSS has much 
more flexibility to encode the distribution of 
nonzero elements by specifying various distri-
butions on the slab part.

In the noisy setting, fi gure 7 shows the av-
erage NMSE of different algorithms when the 
signal to noise ratio (SNR) is 50 dB. Note that 
AMP-SSS outperforms the other algorithms 
apparently in terms of average NMSE. Note 
that for measurement ratios higher than 0.5 in 
the noisy setting, both AMP-SSS and EM-BG-
GAMP outperform the Oracle LS estimator in 
terms of NMSE. This is because both AMP-
SSS and EM-BG-GAMP can learn and exploit 
the distribution characteristic of the binary 
data, while the Oracle LS estimator cannot.

6.3 2D Hand-written digits

A last series of experiments are carried out to 
reconstruct 2D images of hand-written digits 
from the MNIST data set1. The MNIST data 

success rate, respectively. It can be seen that 
in both scenarios, AMP-SSS performs nearly 
the same as PC-SBL and slightly better than 
PCSBLGAMP. In the noisy setting, figure 5 
shows the average NMSE of different algo-
rithms when the signal to noise ratio (SNR) is 
50 dB, where  20log /SNR = 10 2 2(‖ ‖‖ ‖Ax w ) . 
Note that AMP-SSS and PC-SBL outperform 
other methods both in terms of NMSE in the 
noisy case.

6.2 Sparse binary data

The synthetic block-sparse binary signals, i.e., 
the elements are either 0 or 1, are generated in 
a similar way as the sparse Gaussian case. Set 

Fig. 6.  Block sparse binary signal reconstruction, noiseless case.

(a) Success rate vs. M/N (b) Pattern success rate vs. M/N

1 Data set is available at 
http://yann.lecun.com/
exdb/mnist/

Fig. 5.  NMSE vs. M/N for block sparse Gaussian signals, SNR = 50 dB.
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set contains 60,000 digit gray images, each of 
size 28 × 28 pixels. These images are sparse 
since most of the pixels are inactive and take 
the value zero while only a few pixels are ac-
tive. Moreover, due to the inherent structure 
of digits, these images also exhibit structured 
sparsity pattern. One image for each digit is 
randomly extracted from the MNIST data 
set. Due to lack of space, the full results are 
given only for digit 5 in both the noiseless 
and noisy case with different algorithms. For 
the remaining digits, average NMSEs in the 
noisy case at a specifi c measurement ratio are 
shown. Note that to recover 2D images, the 
algorithms MBCS-LBP [27], PC-SBL [45], 
PCSBL-GAMP [46], and the proposed AMP-
SSS are all modifi ed to their 2D versions. The 
results are averaged over 100 independent 
runs. Figure 8(a) and figure 8(b) depict the 
success rate and pattern recovery success rate, 
respectively, which shows that AMP-SSS 
achieves the highest (except Oracle LS) suc-
cess rate and pattern recovery rate at various 
measurement ratios. Figure 9 shows the aver-
age NMSEs at different measurements when 
the signal to noise ratio (SNR) is 30 dB. Note 
that AMP-SSS outperforms the other methods 
(except Oracle LS) in terms of NMSE. The 
typical recovery results are shown in fi gure 10 
when the measurement ratio M / N  0.30=  and 

Fig. 8.  Digit 5 reconstruction from the MNIST data set, noiseless case.

Fig. 7.  NMSE vs. M/N for block sparse binary signals, SNR = 50 dB.

(a) Success rate vs. M/N (b) Pattern success rate vs. M/N (a) Success rate vs. M/N (b) Pattern success rate vs. M/N

SNR  30 dB= . In this case AMP-SSS recovers 
the original image with NMSE 25.04 dB= − , 
which is much lower than those of the other 
methods.

Table I shows the average NMSEs of dif-
ferent algorithms for different digits when 
the measurement ratio M / N  0.30=  and 
SNR  30dB= . It can be seen that Oracle LS 
achieves the lowest NMSE in all cases since it 
knows the support information. For other algo-
rithms with no prior knowledge of the sparsity 
pattern, the proposed AMP-SSS performs the 
best for almost all of the digits. From Table I, 
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it can be seen that the ten digits exhibit quite 
different sparsity patterns, which implies that 
the reconstruction performance of AMP-SSS 
is quite robust to the specifi c sparsity pattern.

VII. CONCLUSIONS

This paper addresses the problem of recover-
ing structured sparse signals using AMP with 
the structured spike and slab prior. The prior 
correlation of the support of the solution is 
encoded by imposing a transformed Gaussian 
process on the spike and slab probabilities. 
Under this model, an efficient AMP based 
algorithm is derived for posterior inference, 
which reduces the computational complexity 
significantly. Further, an efficient method is 
proposed to learn the hyperparameters using 
EM and Bethe free energy optimization. Vari-
ous experimental results on both synthetic and 
real data demonstrate the superior reconstruc-
tion performance of the proposed algorithm.
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